京公网安备 11010802034615号
经营许可证编号:京B2-20210330
SPSS重复测量的多因素方差分析
一、概述
重复测量数据的方差分析是对同一因变量进行重复测量的一种试验设计技术。在给予一种或多种处理后,分别在不同的时间点上通过重复测量同一个受试对象获得的指标的观察值,或者是通过重复测量同一个个体的不同部位(或组织)获得的指标的观察值。重复测量数据在科学研究中十分常见。
分析前要对重复测量数据之间是否存在相关性进行球形检验。如果该检验结果为 P﹥0.05,则说明重复测量数据之间不存在相关性,测量数据符合 Huynh-Feldt 条件,可以用单因素方差分析的方法来处理;如果检验结果 P﹤0.05,则说明重复测量数据之间是存在相关性的,所以不能用单因素方差分析的方法处理数据。在科研实际中的重复测量设计资料后者较多,应该使用重复测量设计的方差分析模型。
球形条件不满足时常有两种方法可供选择:
(1)采用 MANOVA(多变量方差分析方法);
(2)对重复测量 ANOVA 检验结果中与时间有关的 F 值的自由度进行调整。
二、实例解析
新生儿胎粪吸入综合征(MAS)是由于胎儿在子宫内或着生产时吸入了混有胎粪的羊水,从而导致呼吸道和肺泡发生机械性阻塞,并伴有肺泡表面活性物质失活,而且肺组织也会发生化学性炎症,胎儿出生后出现的以呼吸窘迫为主,同时伴有其他脏器受损现象的一组综合征 。血管内皮生长因子 (vascular endothelial growth factor,VEGF) 是一种有丝分裂原,它特异作用于血管内皮细胞时,能够调节血管内皮细胞的增殖和迁移,从而使血管通透性增加。而本实验旨在通过观察分析给予外源性肺表面活性物质治疗前后胎粪吸入综合征患儿血清中 VEGF 的含量变化,评价药物治疗的效果。
将收治的诊断胎粪吸入综合症的新生儿共 42 名。将患儿随机分为肺表面活性物质治疗组(PS 组)和常规治疗组(对照组),每组各 21 例。PS 组和对照组两组所有患儿均给予除用药外的其他相应的对症治疗。PS 组患儿给予牛肺表面活性剂 PS 70 mg/kg 治疗。采集 PS 组及对照组患儿 0 小时,治疗后 24 小时和 72 小时静脉血 2 ml,离心并提取上清液后保存备用并记录血清中 VEGF 的含量变化情况。
结果如下:
3、统计分析
建立数据文件
变量视图:
数据视图:
菜单选择:
首先进入如下对话框,在「被试内因子名称」中输入「time」,「级别数」输入 3,因为每个患者重复测量了 3 次。
后点击「添加」按钮。此时下方「定义」按钮变为可用,点击进入下列对话框:
将「group」选入「因子列表」框,t1-t3 分别选入「全体内变量(time)」框内,如下图所示:
点击右上角「模型」按钮,进入以下对话框,选择「设定」,将「time」选入「全体内模型」框,「group」选入「群体间模型」框,「构建项」选择「主效应」。下方的平方和选「类型 III」,这是对于平衡数据。如果两组样本量不等,则选择「类型 IV」。
点击「继续」返回,点击「绘制」按钮。进入下面对话框:将「time」选入「水平轴」,group 选入「单图」,然后点击「添加」按钮,下面框中会显示「time*group」。
点击「继续」返回,点击「两两比较」按钮,将 group 选入右侧「两两比较检验」框中,选中复选框「LSD」。
点击「继续」返回,点击「选项」按钮,进入下面对话框:将 time 选入「显示均值框」,选中「比较主效应」复选框,选中下方「描述统计」复选框。
下方显著性水平设为 0.05。点击「继续」返回,点击「确定」输出结果。
4、结果解读:
这是一个关于各个时间点的两组数据描述性统计。
这是球形检验结果,p = 0.001<0.05,所以不满足球形分布假设,需要进行多变量方差分析或者自由度调整,SPSS 接下来会给出以上两种结果。
这是进行多变量方差分析的结果,给出了 4 种统计量,它们的检验结果一致,time 的 P<0.001,说明各个时间点的数据的差异有统计学意义,time*group 的 P>0.05,说明时间和分组无交互作用,说明时间因素(即 0 小时、24 小时、72 小时)的作用不随分组(即治疗组和对照组)的不同而不同。
所谓「主体内」,即是重复测量的各个时间点。上表是用各个时间点进行分组的方差分析表,给出 4 种统计量,第一种为满足球星假设的情况,后三种对自由度进行了校正,本题目中不满足球形分布假设,只能看下面的三种检验方法。结果解释同上一个表。
这是对分组的方差分析,对变量进行如下的变换:y =(t1+t2+t3)/sqrt(3)。P = 0.043<0.05,说明有治疗组与对照组之间有统计学差异。
这个图可以直观地看出测量指标随时间的变化趋势。治疗组与对照组两组资料随时间变化的趋势大致相同,治疗组血清中 VEGF 的含量较对照组呈下降趋势,说明治疗组的效果优于对照组。
我们还可以给出在每个时间点上两个分组之间的比较,需要用到多变量方差分析:操作步骤如下:跟之前操作类似,不赘述,看图就行。
结果输出
每个时间点上两组之间的比较(即分别比较 0 小时、24 小时及 72 小时时对照组和治疗组的数据)结果显示 0 小时时 P﹥0.05,治疗组和对照组之间没有统计学差异,而 24 小时和 72 小时时 P﹤0.05,治疗组和对照组两组间有显著的统计学差异。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15