
大数据正在改变制造业的7种方式
虽然制造业是一个有点过时的行业,但是人们可能会惊讶于其能够从使用大数据中受益。由于获得了新的分析工具和更好的收集信息的方式,制造业正在不断发展。
以下是大数据正在重塑美国制造业的几种方式:
1.精度更高。成功制造取决于制造商继续具有竞争力的准确性。在大数据出现之前,最好的方法是投资更好的设备,如MIG焊机设备,或对员工进行更好的培训。然而,使用大数据,制造商可以使用计算机程序来优化流程,并更加巧妙地分析错误,从而防止这些错误产生。
2.产量更高。大多数制造商购买原材料并制造成品,他们销售价格高过制造成本。在该系统中,制造商可以获得更高的收益(每个成品使用的原材料越少),企业的经营就更有利可图。新的大数据应用程序使制造商能够更好地了解其整体产量,并有机会改进其运营方法,生产产品获得更多的利润。
3.更好的预测。供应链预测和需求预测是制造商的两个关键工具。他们可以确定制造商需要生产多少产品,何时淡季减缓生产进度,以及在仓库中的库存或出货量。大数据有助于制造商更好地掌握这种供应链关系的流程变化,因此可以在最有价值的生产条件下进行生产。
4.预测和跟踪供应商业绩。制造商也可以使用大数据跟踪供应商的业绩。例如,如果供应商持续提供不合格的劣质产品,就可以准确计算出这种可能性,并确定选择新的供应商是否更加具有成本效益。
5.更高的可追溯性。大数据还使制造商的流程更加透明和可追溯。制造商的原材料在生产过程中以及生产阶段有多少损失?给定批次产量多少,目前存储在哪里?运送需要多长时间,一旦需要运送,产品在哪里?大数据可帮制造商跟踪生产和交付的所有这些阶段,并提供对可能效率低的领域的洞察和分析。
6.高级自定义工作。大数据显示,通过在以往的努力中获取数据并创造更好地利用原材料的方法,有可能创建高级定制工作。它也可以帮助制造商采取逆向工程,为熟悉的问题提出新的解决方案。
7.投资回报率和运营效率。最后,大数据使制造商能够更深入地了解其运营的真正效率,以及升级时产生的投资回报率(ROI),例如新设备或新的广告策略。
这对制造商意味着什么?
制造商可以用这些信息做什么?他们目前正在做什么来利用这些趋势?
·更高的盈利能力。首先,制造商推动更高的盈利能力。传统上受到原材料成本和生产限制等因素限制的领域,而突破性的降低成本,并在每个生产运行中获得更多的收益。企业主很期待能够探索这些机会,赚取更多的收入。
·更大的竞争压力。随着制造商采用大数据战略,竞争对手感受到采取类似甚至更好的方法的压力。越来越多的竞争迫使越来越多的传统制造商升级内部系统,因此未来的技术发展将会越来越活跃。
·对新角色的需求。即使精益的数据应用程序对外部人员或不熟悉数据分析的人员来说也是具有挑战性的。新技术令人印象深刻,但他们要求有足够知识和经验的人来实施和管理它们。因此,制造商需要其团队招募所需要的人才。
尽管自工业革命以来,经济区域的技术飞跃相对较少,但制造业正受到大数据的影响。在未来的几年里,如果想要继续生产,更多的制造商将被鼓励或被迫采用数据采集,存储和分析的新标准。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15