
对大数据和人工智能的冷思考
大数据和人工智能是今年最热门的话题,在司法领域更是如火如荼,司法在大数据时代的范式革命已经到来。但利之所在弊亦随之,如果对大数据和人工智能的风险缺乏充分认识,不能在热情之余做一番冷思考,则可能会产生许多难以预料的后果。
首先,是大数据和人工智能的安全性问题。该问题虽属老生常谈,但在互联网犯罪模式从攻击计算机和网络本身转向彻底的虚拟犯罪的时代背景下,可能历久弥新。当前,在互联网犯罪中,已经大量出现了犯罪人接受他人委托,侵入政府部门与企事业单位的计算机系统修改数据以及拦截修改计算机信息数据的案例。因此,笔者认为没有理由认为司法大数据能独善其身。毕竟,在互联网犯罪海洋中,没有哪个地方是绝对的安全岛。
其次,是大数据和人工智能的可靠性问题。围绕美国威斯康辛州法院采用的COMPAS量刑程序的争议和诉讼就是一例。有研究者认为,COMPAS倾向于高估某些特定人群的再犯可能性,而这很可能反映了设计者所固有的偏见。如果数据分析本身就受偏见的左右,那么以此为基础的人工智能所作出的决定还能可靠吗?更令人担忧的是,有相当一部分人工智能系统依靠的是机器学习算法。这种算法几乎就是“黑盒子”,因为算法的开发者也难以解释算法的真正运行机制和可能造成的后果。法律乃善良公正之术。当司法拥抱科技时,如果人类将公平正义的决定权交给算法,那么就会面临正义与科技谁会笑到最后的难题。
但对大数据和人工智能的冷思考并不意味着对它们的拒斥。大数据和人工智能在司法领域的运用是大势所趋。如果因为它们现在所存在的缺陷就将其拒之千里之外,无疑是因噎废食。实际上,在未来,随着可供使用的数据越来越多,更多更好的工具被开发出来,也行大家今天所面临的担忧可能会得到缓解。但大家必须清醒地认识到,大数据和人工智能是一把双刃剑。如果不能正确评价和对待它可能带来的风险,那么就可能造成难以预料的后果。
大数据和人工智能并不免除任何人作出判断的责任。因为这一责任属于人类最核心的领域——理性。大数据和人工智能归根结底只是人类理智的产物,盲目地迎合理性的产物而冀图免除自己的责任是非理性的表现。正确认识理性产物中蕴含的非理性,以更好地履行自己的责任才是理性的表现。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15