
如何利用大数据提升汽车竞争力
人们很容易对自己的车产生深厚的感情,无论它是辆破烂二手车还是布加迪。以数据专家的眼光看待这个问题,他们认为这种深厚的感情很快将成为汽车制造商们研发新车的新途径。
现在,先进的汽车制造厂商将对未来生产车型中的车载传感器进行改进,通过远程控制管理软件收集大量数据,这些数据将在很大程度上拉近消费者和汽车制造厂商之间的关系。
汽车制造厂商收集到的信息越多,驾驶体验就越能得到更好的改进,汽车也就越能赢得顾客的心,使客户对品牌更加忠诚。福特公司的客户定制设计流程一直都很长。他们的设计流程一般是从颜色开始,客户可以选择任何颜色作为自己的车身颜色。而现在,消费者的心情和驾驶员的习惯都将成为设计中必须考虑的因素。
福特的工程师们正在研发的新车型Escape SUV,就将采用从社交网站上收集到的数据。福特在社交网站上展开了关于新车型是使用手动后备箱车门还是自动后备箱车门的讨论。参加讨论的网友看起来更喜欢自动后备箱车门,而工程师根据这些数据可以对自己的设计更加有自信。
消费者的意见对于新车型设计的影响越来越大,而制造厂商也能通过消费者对现有车型的反馈来收集信息。这些信息使厂商能更准确地了解现有车型的缺陷,也能更好地满足消费者的需求。
举例来说,现在很多电动车厂商已经意识到,其潜在客户对于电动车最大的担忧就是动力。电动车的动力问题一直是整个行业关注的焦点,这也回答了尼桑、GM等汽车制造商要想方设法帮助消费者去监控车辆电池使用情况以及远程控制电池充电。
福特启用诸如Hadoop这样的开放源工具来管理数据,并且还使用了与文本和数据挖掘相关的其他应用。福特位于硅谷的研究室从福特已销售出的40万辆汽车中收集数据,所有收集上来的数据都会被实时分析。福特工程师通过这些分析能够更加了解自己的产品所存在的问题,也能够更好地预测福特汽车在不同环境下所做出的反应。
通用汽车使用大数据来改进自己的产品设计、汽车性能,并以此来加强与消费者的关系。通用公司从安吉星系统中(安吉星为通用的子公司)收集客户数据,这些数据能有效降低消费者的汽车保险费用。
通用汽车公司对于企业未来的期待是基于数据的,他们希望通用未来的车型能具备在红灯前自动停车、自动寻找停车位、自动提醒驾驶员与前车车距过近等功能。汽车的安全性对于厂商提高消费者忠诚度是具有重要意义的。
对汽车制造厂商来说,数据分析比节约成本更具价值。印度塔塔集团(TATA)已经给所有的自产卡车安装了GPS、传感器和其他通信设备,以便精确监测卡车运行的情况,而不只是简单的定位而已。通过分析从数千辆机动车上收集到的数据,可以有效减少车辆保养的次数,产生可观的价值。
同时,以数据为导向的机动车市场也在德国加速发展。德国众多原始设备制造商(OEM)开始挖掘数据中的精髓——这些精髓能增强与客户的联系。
为了更好了解消费者,这些德国企业打破自己的数据“藩篱”,并用外部信息来扩充自己的数据池——这些数据包括社交媒体中的反馈、社会地理学数据以及公开的宏观经济数据。他们的努力增加了产品销量,激活了市场。
看起来,收集数据对于消费者和制造厂商来说都是颇有益的。但是,如何保护消费者的隐私面临着挑战。福特生产的一款混合动力车每小时会产生25GB的动态数据。福特在CES展会上说,其实驾驶员每一次违反交通规则都逃不过汽车制造商的法眼。
大众汽车负责人Martin Winterkorn最近在德国某展会上针对这种情况发表看法。他表示:“我们一定要竭尽全力阻止汽车变为人们心目中的‘数据怪兽’。”
联网汽车似乎是汽车产业的发展趋势。到2020年,将有90%的新生产的汽车具备网络功能,而当前具备网络功能的汽车仅有10%。促使机动车具备联网功能的一个主导因素是安全性。
联网汽车普遍会比传统汽车更加安全。最近85%的新车中都安装了“黑匣子”,它能捕捉到事故发生前后数秒的重要信息。因此,对于某些制造厂商来说,问题就在于谁有权拥有这些数据。
联网汽车所面临的另外一个问题是软件的更新问题。也就是说,汽车制造厂商一定要修正那些潜在并具有危险性的缺陷。
去年,美国有关当局介入调查了特斯拉电动车三起电池因为高速行驶而起火的事件,其中两起事故发生的原因是由于路面上的碎石渣迸溅到电池而引发了起火。特斯拉对此事的回应是改造了自己的产品——在一定的速度下升高了车悬架的默认高度。这个改变不仅仅避免了产品召回,还避免了潜在的事故。
联网汽车光明的未来在于这项技术将大大拉近制造厂商与消费者的距离。而性价比越高的连接方式,则意味着收集到更全面的数据。如果消费者希望自己的爱车更安全,性能更优越,那么很可能就需要第三方介入并使用这些数据。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04