京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据变现,电信运营商出啥招
近几年,随着移动互联网的快速发展,大数据成为行业当之无愧的网红,电信运营企业是大数据发展应用的生力军。据统计,截至2017年,我国运营商主要在九大领域布局大数据业务,分别为电信、金融、零售、政务、旅游、智慧城市、交通、体育和游戏(图1)。然而,虽然当前大数据的业务场景众多,但却尚未完全释放出应有的商业价值。未来运营商该如何更好地将大数据变现,使其真正为第三条曲线贡献价值呢?
最佳市场机遇在哪里
Gartner对全球100多家运营商的13个垂直行业、140多个大数据案例进行研究,描绘出了大数据变现的四象限图(如图2)。其中,横轴代表该行业产生大数据收入的机会;纵轴代表运营商在未来5年内获得收入的机会。可以看出,最有利于运营商变现的领域就是右上角的第一象限:广告/市场营销、医疗健康、智慧城市应用。
哪些数据更容易变现
对于运营商而言,哪些数据更容易变现呢?总体而言,有四类数据值得关注:
第一类是基于BSS系统的用户身份和通信类数据。包括用户开户时的身份信息,话费情况即通话、短信与流量费用的构成,套餐种类,甚至终端类型等。
第二类基于运营商OSS系统的用户行为数据。包括用户通过手机上网、聊天、玩游戏、浏览网页等行为产生的数据。
第三类是基于用户LBS的位置数据。如果说前两类均偏线上的话,那这类数据偏向线下,与用户线下的使用场景密切相关。可用于线下商家营销、人口流动、公共安全、城市规划等。
第四类是在物联网场景下产生的2B和2C数据。这里主要指物联网场景下的“物”和“人”两类大数据:“物”的大数据——如来自仪表收集的水、电、气数据,传感器收集的气候、污染数据,资产货运的跟踪数据;“人”的大数据——如人体健康、生活习惯或运动的数据,这些数据在医疗保健、可穿戴设备、智能家居领域有极大的价值。
理想变现模式有哪些
纵观全球,大数据的变现模式主要包括6种:
一、提供原始数据:运营商将大数据进行匿名化等一系列脱敏处理后,有偿提供给第三方合作伙伴。
二、提供数据开发平台:运营商构建一个大数据平台,在平台上提供Hadoop平台、应用程序开发、预测分析/机器学习等模块功能,供外部开发者或公司使用。
三、广告/营销变现:包括线上广告和线下广告两种模式。线上广告就是利用大数据进行精准广告投放。SKT构建了一个高阶的玩法,建立了Syrup ad大数据广告平台,让广告投放者与广告发布者在平台生态中实现共赢。线下广告就是结合LBS进行线下的商家推荐、优惠券推介等。
四、提供企业定制化分析:根据企业的特定需求,以项目形式开展特定的大数据定制化分析。例如英国的某车险公司想了解汽车碰撞现场的场景,沃达丰提供了“汽车碰撞重建分析”,还原了汽车碰撞时的力度、天气、交通流量、事故位置、车速等。
五、提供行业解决方案:针对整个行业的普适性解决方案,这种方式复用性更强,因此变现能力也更强。例如SK电讯的Geovision,基于人口、销售、地产、商业信息等大数据为众多小型企业提供商业区域选址分析服务。
六、提供基于物联网方案的大数据增值服务:运营商不针对大数据服务直接收费,而是将其作为一整套物联网解决方案中嵌入的重要一环间接收费。例如在货运和资产跟踪中,收集货物的位置、温度、湿度、撞击、掉落等数据,从而提供货物/资产跟踪和管理服务。
未来之路在何方
为何当前难以实现大规模的变现呢?综合分析之后可以发现,运营商当前的组织架构和运营体系需要调整,可从五个方面入手。
第一,升级IT架构和体系。运营商需要将结构化和非结构化的元素以及支撑、分析工具集成在一起。而当前运营商还存在IT系统不兼容的问题,难以集成,对于数据的导入、存储、分类和呈现功能不尽理想,因此需要大力调整和升级。
第二,建立专门的大数据组织架构。设立首席数据官是很有必要的,在运营商庞大的体制内,需要有专人站在全局的角度,在数据收集、数据管理和数据分析方面制定战略。同时,需要对大数据的发展进行权衡取舍,选择最有价值的细分领域重点发展。
第三,建立公司大数据资源池。目前公司大数据散落在各个系统中,需要建立专门的大数据资源池,将其筛选、整理、整合和录入。只有建立了有价值导向的大数据资源池,才能快速定制形成项目。
第四,构建大数据价值评估机制。价值评估直接关乎激励。大数据的价值包括直接贡献的收入和间接贡献的收入。直接贡献的收入即大数据解决方案、项目所产生的收益;而间接贡献的收入可能包括,因提高了生产效率、巩固了合作伙伴关系,或者大数据作为解决方案的一部分从而产生的收入。
第五,做好大数据隐私风险防控。做好用户的授权知情通知,将数据进行分级分类管理并进行脱敏处理。建立大数据“收集-处理-传输-加工-输出”全流程的操作规范,并且可以识别每个环节的经手人,此外还应建立应急风险赔偿机制等。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15