大数据变现,电信运营商出啥招
近几年,随着移动互联网的快速发展,大数据成为行业当之无愧的网红,电信运营企业是大数据发展应用的生力军。据统计,截至2017年,我国运营商主要在九大领域布局大数据业务,分别为电信、金融、零售、政务、旅游、智慧城市、交通、体育和游戏(图1)。然而,虽然当前大数据的业务场景众多,但却尚未完全释放出应有的商业价值。未来运营商该如何更好地将大数据变现,使其真正为第三条曲线贡献价值呢?
最佳市场机遇在哪里
Gartner对全球100多家运营商的13个垂直行业、140多个大数据案例进行研究,描绘出了大数据变现的四象限图(如图2)。其中,横轴代表该行业产生大数据收入的机会;纵轴代表运营商在未来5年内获得收入的机会。可以看出,最有利于运营商变现的领域就是右上角的第一象限:广告/市场营销、医疗健康、智慧城市应用。
哪些数据更容易变现
对于运营商而言,哪些数据更容易变现呢?总体而言,有四类数据值得关注:
第一类是基于BSS系统的用户身份和通信类数据。包括用户开户时的身份信息,话费情况即通话、短信与流量费用的构成,套餐种类,甚至终端类型等。
第二类基于运营商OSS系统的用户行为数据。包括用户通过手机上网、聊天、玩游戏、浏览网页等行为产生的数据。
第三类是基于用户LBS的位置数据。如果说前两类均偏线上的话,那这类数据偏向线下,与用户线下的使用场景密切相关。可用于线下商家营销、人口流动、公共安全、城市规划等。
第四类是在物联网场景下产生的2B和2C数据。这里主要指物联网场景下的“物”和“人”两类大数据:“物”的大数据——如来自仪表收集的水、电、气数据,传感器收集的气候、污染数据,资产货运的跟踪数据;“人”的大数据——如人体健康、生活习惯或运动的数据,这些数据在医疗保健、可穿戴设备、智能家居领域有极大的价值。
理想变现模式有哪些
纵观全球,大数据的变现模式主要包括6种:
一、提供原始数据:运营商将大数据进行匿名化等一系列脱敏处理后,有偿提供给第三方合作伙伴。
二、提供数据开发平台:运营商构建一个大数据平台,在平台上提供Hadoop平台、应用程序开发、预测分析/机器学习等模块功能,供外部开发者或公司使用。
三、广告/营销变现:包括线上广告和线下广告两种模式。线上广告就是利用大数据进行精准广告投放。SKT构建了一个高阶的玩法,建立了Syrup ad大数据广告平台,让广告投放者与广告发布者在平台生态中实现共赢。线下广告就是结合LBS进行线下的商家推荐、优惠券推介等。
四、提供企业定制化分析:根据企业的特定需求,以项目形式开展特定的大数据定制化分析。例如英国的某车险公司想了解汽车碰撞现场的场景,沃达丰提供了“汽车碰撞重建分析”,还原了汽车碰撞时的力度、天气、交通流量、事故位置、车速等。
五、提供行业解决方案:针对整个行业的普适性解决方案,这种方式复用性更强,因此变现能力也更强。例如SK电讯的Geovision,基于人口、销售、地产、商业信息等大数据为众多小型企业提供商业区域选址分析服务。
六、提供基于物联网方案的大数据增值服务:运营商不针对大数据服务直接收费,而是将其作为一整套物联网解决方案中嵌入的重要一环间接收费。例如在货运和资产跟踪中,收集货物的位置、温度、湿度、撞击、掉落等数据,从而提供货物/资产跟踪和管理服务。
未来之路在何方
为何当前难以实现大规模的变现呢?综合分析之后可以发现,运营商当前的组织架构和运营体系需要调整,可从五个方面入手。
第一,升级IT架构和体系。运营商需要将结构化和非结构化的元素以及支撑、分析工具集成在一起。而当前运营商还存在IT系统不兼容的问题,难以集成,对于数据的导入、存储、分类和呈现功能不尽理想,因此需要大力调整和升级。
第二,建立专门的大数据组织架构。设立首席数据官是很有必要的,在运营商庞大的体制内,需要有专人站在全局的角度,在数据收集、数据管理和数据分析方面制定战略。同时,需要对大数据的发展进行权衡取舍,选择最有价值的细分领域重点发展。
第三,建立公司大数据资源池。目前公司大数据散落在各个系统中,需要建立专门的大数据资源池,将其筛选、整理、整合和录入。只有建立了有价值导向的大数据资源池,才能快速定制形成项目。
第四,构建大数据价值评估机制。价值评估直接关乎激励。大数据的价值包括直接贡献的收入和间接贡献的收入。直接贡献的收入即大数据解决方案、项目所产生的收益;而间接贡献的收入可能包括,因提高了生产效率、巩固了合作伙伴关系,或者大数据作为解决方案的一部分从而产生的收入。
第五,做好大数据隐私风险防控。做好用户的授权知情通知,将数据进行分级分类管理并进行脱敏处理。建立大数据“收集-处理-传输-加工-输出”全流程的操作规范,并且可以识别每个环节的经手人,此外还应建立应急风险赔偿机制等。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-25在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-24以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《刘静:10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda ...
2025-04-23大咖简介: 刘凯,CDA大咖汇特邀讲师,DAMA中国分会理事,香港金管局特聘数据管理专家,拥有丰富的行业经验。本文将从数据要素 ...
2025-04-22CDA持证人简介 刘伟,美国 NAU 大学计算机信息技术硕士, CDA数据分析师三级持证人,现任职于江苏宝应农商银行数据治理岗。 学 ...
2025-04-21持证人简介:贺渲雯 ,CDA 数据分析师一级持证人,互联网行业数据分析师 今天我将为大家带来一个关于用户私域用户质量数据分析 ...
2025-04-18一、CDA持证人介绍 在数字化浪潮席卷商业领域的当下,数据分析已成为企业发展的关键驱动力。为助力大家深入了解数据分析在电商行 ...
2025-04-17CDA持证人简介:居瑜 ,CDA一级持证人,国企财务经理,13年财务管理运营经验,在数据分析实践方面积累了丰富的行业经验。 一、 ...
2025-04-16持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03