
大数据时代,流量怎么经营
大数据时代电信运营商面临的主要问题是,为了满足数据流量的增长而不断进行网络扩容,但数据流量却增量不增收;同时,同质化竞争严重以及业务全面受到OTT(OTT,全称为Over the top,据说源自NBA的“过顶传球”,借此比喻服务提供商越过基础网络,直接向用户提供服务)的冲击,导致用户离网率高。据预测,未来10年,海外30%的电信运营商会被一些大型电信运营商兼并而逐渐消失。究其原因是语音时代电信运营商的营销策略比较简单,无需设计复杂的精细化套餐或业务依然能够享有相当大的市场份额,而到了数据时代,依然沿用语音时代营销策略的电信运营商将会丧失市场的主导权,其在价值链中的地位将逐渐下降。在大数据时代,运营商如何才能经营好流量?
没有哑管道只有哑运营商
电信运营商发展流量经营可以归纳为三个阶段:
第一阶段是将流量进行简单打包计费,比如20元套餐包含100M流量,超出流量按每兆流量0.3元,国内的流量经营目前基本处在这个阶段;第二阶段是基于时间、空间、带宽、设备、热门网站、客户群等细分的流量经营策略,目的是提升流量的价值,比如20元包4M带宽共10G的流量,超过10G带宽将为2M,20元流量包免费浏览Facebook等,欧洲和日本的电信运营商目前正处在这个阶段,此类业务发展模式已较为成熟;第三个阶段是流量经营高级阶段,即电信运营商建立精细化的用户分析系统,进行定向的营销策略,例如广告投放和后向收费等。
总体而言,国内电信运营商在移动数据流量经营方面仅仅是沿袭过去简单、粗放的营销手段,并没有深入发掘流量的价值。
掌握用户的信息是电信运营商的先天优势,与OTT只了解用户的虚拟信息相比,电信运营商可以完全从管道中获取用户的性别、年龄、兴趣爱好、消费习惯等个人行为喜好,但运营商并不具备深入的用户数据和行为数据分析能力。这就使得运营商丧失了对用户的主导权,无法做到引导用户的行为,只是盲目地跟随市场进行同质化的竞争。
电信运营商大力建设的智能管道可以实现包括信息内容可视化、灵活计费、流量优化和差异化场景的移动带宽控制等巨大功能,同时其已开始在网络中部署FCC、DPI、OCI等流量经营所必需的网络设备。但目前电信运营商需要解决的最大问题是无法充分利用这些工具开展流量经营方面的业务:前端的市场营销部门市场反应速度严重不足,并且和网络、运维等相关网络部门距离过大、严重脱节,无法形成互动式的工作机制,导致前端一线人员无法了解网络的可行性;而网络部门的人员则只关心建设管道,不考虑管道能实现什么样的业务。因此运营商必须形成一种闭环的工作机制,缩短各部门间的距离,真正实现管道的可利用化。
精细化设计套餐是基础
未来的移动数据流量套餐必须是精细化的,可以进行多维度的细分:第一是客户的细分,流量套餐必须针对不同客户的需求设计不同的内容,比如年轻人午夜套餐、家庭分享式套餐。
第二是带宽的细分。用户使用不同的业务,需要的带宽不同,不同带宽的用户体验和资费也不尽相同,并且提升带宽需要另外付费,这样可以提升带宽的价值。
第三是时间的细分。忙闲时段资费不同,并推出基于天、周、月不同时间段的套餐。这些方案不仅可以满足不同客户的需求,并且可以实现流量资源的优化。除此之外,电信运营商完全可以实现客户开通即享受服务的要求。
第四是内容的细分。国外已经有相当成熟的案例,例如Facebook包月免费上网,笔者认为绑定OTT是实现流量价值化最有效最便捷的手段。电信运营商可以充分利用OTT有价值的内容,将其作为运营商吸引用户、提高流量增长的手段。Facebook包月方案已帮助国外不少运营商拉动了流量,维系了客户。中国互联网目前发展势头迅猛,杀手级的OTT产品不在少数,如新浪微博、腾讯QQ、优酷视频等,国内电信运营商可考虑利用好这些产品转变传统经营模式,帮助自身拉动流量,提升用户黏性。
三大着力点助推
移动数据流量经营
加大对市场营销的重视程度。传统电信运营商以建设管道为工作重点,对市场一线的业务实行的是较为粗放简单的营销策略。但流量经营时代,能否满足复杂多变的客户需求、能否提供差异化的套餐产品以及能否避免同质化的竞争,这些将是电信运营商市场营销部门必须解决的重要课题。语音时代,各电信运营商之间拼的是网络质量,而数据时代,当所有运营商的网络质量都相差无几时,就必须依靠个性化、精细化、差异化的产品来吸引和维系用户了。因此对市场一线套餐设计、营销的人员的要求就会越来越高。上文提到的MegaFon,其对市场方面的业务投入就很大,MegaFon的市场部仅进行市场分析的人员就超过了50人。此外,从事情报搜集、战略制订的人员也有30多人。这就可以使得MegaFon能够很及时、准确地推出很多具有针对性的套餐。
加快市场响应速度,引导用户的消费行为。运营商提出了以用户为中心的理念,产品要满足用户的需求。笔者认为满足用户需求已经表明企业走在了用户的后面,这就意味着需求首先被用户发觉但迟迟得不到满足,而不是企业创造需求来引导用户的行为。据调查显示,许多消费者很希望自己所签约的电信运营商是一家比较“年轻”的企业,能源源不断地创造出新的产品,这就要求电信运营商能敏锐地捕捉到潜在的市场需求,并且快速创造产品来引导用户的消费行为,走在用户前面。创造产品并不意味着电信运营商花很长的时间生产出一个新的业务或服务,其只需要整合产业链上有价值的内容,进行简单的绑定或加工即可。例如,伦敦奥运会期间,中国的电信运营商可以快速设计一项手机观看比赛的套餐包月计划,这样的套餐不仅可以带来收益,而且可以优化网络,提高流量的利用率。在瞬息万变的市场环境中,电信运营商如果没有快速的响应速度就会让大量的机会白白流失。
加大部门间的合作力度,实施闭环营销策略。电信运营商推出精细化的3G套餐产品应实施闭环营销策略,所谓闭环营销策略是指完成一系列的套餐制订首先需要对网络进行深度分析,了解网络的能力,然后根据市场响应设计套餐,并作一个灵活的带宽控制,接下来分析这些套餐对网络的影响,是否达到了预期效果,最后再给出一个网络优化的方案,以提高网络的利用率。如此循环反复,一项业务将经过市场、销售、网络、运维等各个部门,这就需要各部门通力合作共同来完成。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29