
大数据的互联网化 能源行业如何利用数据发展
1能源行业大数据的互联网化
马云曾经说过一句话,当今以及未来的世界当中,最珍贵的能源就是大数据。获取你认为这句话有点以偏概全了,但是我们不可否认的是随着云计算和大数据技术的兴起和快速发展,在很多行业当中都已经可以看到了大数据技术的应用,对于能源行业也不例外。
现在很多专家都在谈能源互联网的概念,专家指出,能源互联网绝不仅仅是信息单纯的开放,或是能量交换的开放,用户需要的是一种方式把所有人的积极性调动起来,在建网方面、建管道、建储能、搞通信等等方面都能够进行信息交换,从而利用大数据技术的实施来使得能源行业的业务推动起来更快更好。
能源行业利用大数据做“互联网化”
未来分布式能源等越来越广泛,就出现了源用混合的场景。一旦源用混合变成常态,在各个地区就会自主地形成一些区域,既有源、也有用,甚至配有新能源,可以储能,所有的环节都在一个小的区域里,这个构架是对现有架构的补充,既有自下而上,也需要跟大电网的可靠性衔接。
能源互联网不仅是信息的开放,还是能量交换的开放,我们需要一种方式把大家的积极主动性调动起来,你建、他建,有建网的、有建源的、有建管道的、有建储能的,有搞信息的、有搞通信的,能够一块对等的互联,分享能量交换的基础设施,进而交换信息,最终就是价值交换。如果在这几个层面上都能以能源互联网的思路打通,将是未来能源基础设施相当大的格局上的变化。
大数据在其中的深度应用
负荷信息在传统的能源行业当中一直都是一个非常难解决的问题,随着大数据技术发展到今天,上述的IT困难已经到了被彻底改变的时候了,越来越多的能源行业企业开始把负荷信息在线的建模、辨识、状态评估、甚至预测,拿到参数,然后跟能源互联网去互动,进而参与到整个区域的能量管理。
对供电、供能的质量信息采集是在线实时监测的一种,比如涉及到暂态问题数据量就会比较大。基于这样的数据可以做非常多的事情,不光是负荷的建模和分析,电能质量分析,还有分布式能源的接入,数据时时刻刻在变,将信息按需要采集上来,根据负载动态调度。多能规划调度不仅考虑电,还要考虑冷热的需求。
同时,系统安全问题也是一个需要重点考量的问题,能源互联网需要类似配网的自动故障诊断功能,同时接入上层的电网互动时也需要有一个接口,不仅需要提高信息的安全性,还需要提高电网运行的安全性。
大数据方案究竟有啥用
在能源行业用户针对大数据解决方案的应用过程中,一般是通过两种方式来解决的,一种是垂直的解决方案,这种应用的方案从数据采集到上层应用来讲都是垂直进行的,还有一种就是水平的,上来的是通用信息,构建IaaS、PaaS、SaaS云平台,然后再开发新的应用。
针对现在的能源行业企业来说,采用第二种水平式的方案数量是比较多的,在这个基础上做各种的数据清理、同步、识标,变成数据仓库进行数据的统计和挖掘,进而进行大数据分析,深度学习、大规模神经网络等等新技术,怎么来运用到这里边进行学习、关联和分类,都有非常大的空间。这样大量的能源互联网在线运行数据对于数据的研究者是非常有价值的。
编辑的话
就像我们此前报道的那样,在金融、医疗、教育等等很多行业现在的大数据技术都已经开始了各种非常深度的合作,我们不难发现,未来的信息时代和IT技术时代必将会与云计算和大数据进行非常紧密的结合,那么对于行业用户来说,行业化的全数字转型也已经被更多的企业提及,这点对于行业企业市场的发展来说,是十分有必要的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28