
大数据的互联网化 能源行业如何利用数据发展
1能源行业大数据的互联网化
马云曾经说过一句话,当今以及未来的世界当中,最珍贵的能源就是大数据。获取你认为这句话有点以偏概全了,但是我们不可否认的是随着云计算和大数据技术的兴起和快速发展,在很多行业当中都已经可以看到了大数据技术的应用,对于能源行业也不例外。
现在很多专家都在谈能源互联网的概念,专家指出,能源互联网绝不仅仅是信息单纯的开放,或是能量交换的开放,用户需要的是一种方式把所有人的积极性调动起来,在建网方面、建管道、建储能、搞通信等等方面都能够进行信息交换,从而利用大数据技术的实施来使得能源行业的业务推动起来更快更好。
能源行业利用大数据做“互联网化”
未来分布式能源等越来越广泛,就出现了源用混合的场景。一旦源用混合变成常态,在各个地区就会自主地形成一些区域,既有源、也有用,甚至配有新能源,可以储能,所有的环节都在一个小的区域里,这个构架是对现有架构的补充,既有自下而上,也需要跟大电网的可靠性衔接。
能源互联网不仅是信息的开放,还是能量交换的开放,我们需要一种方式把大家的积极主动性调动起来,你建、他建,有建网的、有建源的、有建管道的、有建储能的,有搞信息的、有搞通信的,能够一块对等的互联,分享能量交换的基础设施,进而交换信息,最终就是价值交换。如果在这几个层面上都能以能源互联网的思路打通,将是未来能源基础设施相当大的格局上的变化。
大数据在其中的深度应用
负荷信息在传统的能源行业当中一直都是一个非常难解决的问题,随着大数据技术发展到今天,上述的IT困难已经到了被彻底改变的时候了,越来越多的能源行业企业开始把负荷信息在线的建模、辨识、状态评估、甚至预测,拿到参数,然后跟能源互联网去互动,进而参与到整个区域的能量管理。
对供电、供能的质量信息采集是在线实时监测的一种,比如涉及到暂态问题数据量就会比较大。基于这样的数据可以做非常多的事情,不光是负荷的建模和分析,电能质量分析,还有分布式能源的接入,数据时时刻刻在变,将信息按需要采集上来,根据负载动态调度。多能规划调度不仅考虑电,还要考虑冷热的需求。
同时,系统安全问题也是一个需要重点考量的问题,能源互联网需要类似配网的自动故障诊断功能,同时接入上层的电网互动时也需要有一个接口,不仅需要提高信息的安全性,还需要提高电网运行的安全性。
大数据方案究竟有啥用
在能源行业用户针对大数据解决方案的应用过程中,一般是通过两种方式来解决的,一种是垂直的解决方案,这种应用的方案从数据采集到上层应用来讲都是垂直进行的,还有一种就是水平的,上来的是通用信息,构建IaaS、PaaS、SaaS云平台,然后再开发新的应用。
针对现在的能源行业企业来说,采用第二种水平式的方案数量是比较多的,在这个基础上做各种的数据清理、同步、识标,变成数据仓库进行数据的统计和挖掘,进而进行大数据分析,深度学习、大规模神经网络等等新技术,怎么来运用到这里边进行学习、关联和分类,都有非常大的空间。这样大量的能源互联网在线运行数据对于数据的研究者是非常有价值的。
编辑的话
就像我们此前报道的那样,在金融、医疗、教育等等很多行业现在的大数据技术都已经开始了各种非常深度的合作,我们不难发现,未来的信息时代和IT技术时代必将会与云计算和大数据进行非常紧密的结合,那么对于行业用户来说,行业化的全数字转型也已经被更多的企业提及,这点对于行业企业市场的发展来说,是十分有必要的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15