京公网安备 11010802034615号
经营许可证编号:京B2-20210330
Python中如何优雅的合并两个字典(dict)方法示例
字典是Python中最强大的数据类型之一,本文将给大家详细介绍关于Python合并两个字典(dict)的相关内容,分享出来供大家参考学习,话不多说了,来一起看看详细的介绍吧。
一行代码合并两个dict
假设有两个dict x和y,合并成一个新的dict,不改变 x和y的值,例如
x = {'a': 1, 'b': 2}
y = {'b': 3, 'c': 4}
期望得到一个新的结果Z,如果key相同,则y覆盖x。期望的结果是
>>> z
{'a': 1, 'b': 3, 'c': 4}
在PEP448中,有个新的语法可以实现,并且在python3.5中支持了该语法,合并代码如下
z = {**x, **y}
妥妥的一行代码。 由于现在很多人还在用python2,对于python2和python3.0-python3.4的人来说,有一个比较优雅的方法,但是需要两行代码。
z = x.copy()
z.update(y)
上面的方法,y都会覆盖x里的内容,所以最终结果b=3.
不使用python3.5如何一行完成了
如果您还没有使用Python 3.5,或者需要编写向后兼容的代码,并且您希望在单个表达式中运行,则最有效的方法是将其放在一个函数中:
def merge_two_dicts(x, y):
"""Given two dicts, merge them into a new dict as a shallow copy."""
z = x.copy()
z.update(y)
return z
然后一行代码完成调用:
z = merge_two_dicts(x, y)
你也可以定义一个函数,合并多个dict,例如
def merge_dicts(*dict_args):
"""
Given any number of dicts, shallow copy and merge into a new dict,
precedence goes to key value pairs in latter dicts.
"""
result = {}
for dictionary in dict_args:
result.update(dictionary)
return result
然后可以这样使用
z = merge_dicts(a, b, c, d, e, f, g)
所有这些里面,相同的key,都是后面的覆盖前面的。
一些不够优雅的示范
items
有些人会使用这种方法:
z = dict(x.items() + y.items())
这其实就是在内存中创建两个列表,再创建第三个列表,拷贝完成后,创建新的dict,删除掉前三个列表。这个方法耗费性能,而且对于python3,这个无法成功执行,因为items()返回是个对象。
>>> c = dict(a.items() + b.items())
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: unsupported operand type(s) for +: 'dict_items' and
'dict_items'
你必须明确的把它强制转换成list,z = dict(list(x.items()) + list(y.items())) ,这太浪费性能了。 另外,想以来于items()返回的list做并集的方法对于python3来说也会失败,而且,并集的方法,导致了重复的key在取值时的不确定,所以,如果你对两个dict合并有优先级的要求,这个方法就彻底不合适了。
>>> x = {'a': []}
>>> y = {'b': []}
>>> dict(x.items() | y.items())
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: unhashable type: 'list'
这里有一个例子,其中y应该具有优先权,但是由于任意的集合顺序,x的值被保留:
>>> x = {'a': 2}
>>> y = {'a': 1}
>>> dict(x.items() | y.items())
{'a': 2}
构造函数
也有人会这么用
z = dict(x, **y)
这样用很好,比前面的两步的方法高效多了,但是可阅读性差,不够pythonic,如果当key不是字符串的时候,python3中还是运行失败
>>> c = dict(a, **b)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: keyword arguments must be strings
Guido van Rossum 大神说了:宣告dict({}, {1:3})是非法的,因为毕竟是滥用机制。虽然这个方法比较hacker,但是太投机取巧了。
一些性能较差但是比较优雅的方法
下面这些方法,虽然性能差,但也比items方法好多了。并且支持优先级。
{k: v for d in dicts for k, v in d.items()}
python2.6中可以这样
dict((k, v) for d in dicts for k, v in d.items())
itertools.chain 将以正确的顺序将键值对上的迭代器链接:
import itertools
z = dict(itertools.chain(x.iteritems(), y.iteritems()))
性能测试
以下是在Ubuntu 14.04上完成的,在Python 2.7(系统Python)中:
>>> min(timeit.repeat(lambda: merge_two_dicts(x, y)))
0.5726828575134277
>>> min(timeit.repeat(lambda: {k: v for d in (x, y) for k, v in d.items()} ))
1.163769006729126
>>> min(timeit.repeat(lambda: dict(itertools.chain(x.iteritems(),y.iteritems()))))
1.1614501476287842
>>> min(timeit.repeat(lambda: dict((k, v) for d in (x, y) for k, v in d.items())))
2.2345519065856934
在python3.5中
>>> min(timeit.repeat(lambda: {**x, **y}))
0.4094954460160807
>>> min(timeit.repeat(lambda: merge_two_dicts(x, y)))
0.7881555100320838
>>> min(timeit.repeat(lambda: {k: v for d in (x, y) for k, v in d.items()} ))
1.4525277839857154
>>> min(timeit.repeat(lambda: dict(itertools.chain(x.items(), y.items()))))
2.3143140770262107
>>> min(timeit.repeat(lambda: dict((k, v) for d in (x, y) for k, v in d.items())))
3.2069112799945287
总结
以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作能带来一定的帮助
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21