京公网安备 11010802034615号
经营许可证编号:京B2-20210330
Python中如何优雅的合并两个字典(dict)方法示例
字典是Python中最强大的数据类型之一,本文将给大家详细介绍关于Python合并两个字典(dict)的相关内容,分享出来供大家参考学习,话不多说了,来一起看看详细的介绍吧。
一行代码合并两个dict
假设有两个dict x和y,合并成一个新的dict,不改变 x和y的值,例如
x = {'a': 1, 'b': 2}
y = {'b': 3, 'c': 4}
期望得到一个新的结果Z,如果key相同,则y覆盖x。期望的结果是
>>> z
{'a': 1, 'b': 3, 'c': 4}
在PEP448中,有个新的语法可以实现,并且在python3.5中支持了该语法,合并代码如下
z = {**x, **y}
妥妥的一行代码。 由于现在很多人还在用python2,对于python2和python3.0-python3.4的人来说,有一个比较优雅的方法,但是需要两行代码。
z = x.copy()
z.update(y)
上面的方法,y都会覆盖x里的内容,所以最终结果b=3.
不使用python3.5如何一行完成了
如果您还没有使用Python 3.5,或者需要编写向后兼容的代码,并且您希望在单个表达式中运行,则最有效的方法是将其放在一个函数中:
def merge_two_dicts(x, y):
"""Given two dicts, merge them into a new dict as a shallow copy."""
z = x.copy()
z.update(y)
return z
然后一行代码完成调用:
z = merge_two_dicts(x, y)
你也可以定义一个函数,合并多个dict,例如
def merge_dicts(*dict_args):
"""
Given any number of dicts, shallow copy and merge into a new dict,
precedence goes to key value pairs in latter dicts.
"""
result = {}
for dictionary in dict_args:
result.update(dictionary)
return result
然后可以这样使用
z = merge_dicts(a, b, c, d, e, f, g)
所有这些里面,相同的key,都是后面的覆盖前面的。
一些不够优雅的示范
items
有些人会使用这种方法:
z = dict(x.items() + y.items())
这其实就是在内存中创建两个列表,再创建第三个列表,拷贝完成后,创建新的dict,删除掉前三个列表。这个方法耗费性能,而且对于python3,这个无法成功执行,因为items()返回是个对象。
>>> c = dict(a.items() + b.items())
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: unsupported operand type(s) for +: 'dict_items' and
'dict_items'
你必须明确的把它强制转换成list,z = dict(list(x.items()) + list(y.items())) ,这太浪费性能了。 另外,想以来于items()返回的list做并集的方法对于python3来说也会失败,而且,并集的方法,导致了重复的key在取值时的不确定,所以,如果你对两个dict合并有优先级的要求,这个方法就彻底不合适了。
>>> x = {'a': []}
>>> y = {'b': []}
>>> dict(x.items() | y.items())
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: unhashable type: 'list'
这里有一个例子,其中y应该具有优先权,但是由于任意的集合顺序,x的值被保留:
>>> x = {'a': 2}
>>> y = {'a': 1}
>>> dict(x.items() | y.items())
{'a': 2}
构造函数
也有人会这么用
z = dict(x, **y)
这样用很好,比前面的两步的方法高效多了,但是可阅读性差,不够pythonic,如果当key不是字符串的时候,python3中还是运行失败
>>> c = dict(a, **b)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: keyword arguments must be strings
Guido van Rossum 大神说了:宣告dict({}, {1:3})是非法的,因为毕竟是滥用机制。虽然这个方法比较hacker,但是太投机取巧了。
一些性能较差但是比较优雅的方法
下面这些方法,虽然性能差,但也比items方法好多了。并且支持优先级。
{k: v for d in dicts for k, v in d.items()}
python2.6中可以这样
dict((k, v) for d in dicts for k, v in d.items())
itertools.chain 将以正确的顺序将键值对上的迭代器链接:
import itertools
z = dict(itertools.chain(x.iteritems(), y.iteritems()))
性能测试
以下是在Ubuntu 14.04上完成的,在Python 2.7(系统Python)中:
>>> min(timeit.repeat(lambda: merge_two_dicts(x, y)))
0.5726828575134277
>>> min(timeit.repeat(lambda: {k: v for d in (x, y) for k, v in d.items()} ))
1.163769006729126
>>> min(timeit.repeat(lambda: dict(itertools.chain(x.iteritems(),y.iteritems()))))
1.1614501476287842
>>> min(timeit.repeat(lambda: dict((k, v) for d in (x, y) for k, v in d.items())))
2.2345519065856934
在python3.5中
>>> min(timeit.repeat(lambda: {**x, **y}))
0.4094954460160807
>>> min(timeit.repeat(lambda: merge_two_dicts(x, y)))
0.7881555100320838
>>> min(timeit.repeat(lambda: {k: v for d in (x, y) for k, v in d.items()} ))
1.4525277839857154
>>> min(timeit.repeat(lambda: dict(itertools.chain(x.items(), y.items()))))
2.3143140770262107
>>> min(timeit.repeat(lambda: dict((k, v) for d in (x, y) for k, v in d.items())))
3.2069112799945287
总结
以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作能带来一定的帮助
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在互联网产品运营、用户增长的实战场景中,很多从业者都会陷入一个误区:盲目投入资源做推广、拉新,却忽视了“拉新后的用户激活 ...
2026-02-06在机器学习建模过程中,特征选择是决定模型性能的关键环节——面对动辄几十、上百个特征的数据(如用户画像的几十项维度、企业经 ...
2026-02-06在CDA(Certified Data Analyst)数据分析师的日常实操中,表格结构数据是贯穿全流程的核心载体,而对表格数据类型的精准识别、 ...
2026-02-06在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05在分类模型(如风控反欺诈、医疗疾病诊断、客户流失预警)的实操落地中,ROC曲线是评估模型区分能力的核心工具,而阈值则是连接 ...
2026-02-05对CDA(Certified Data Analyst)数据分析师而言,数据分析的价值不仅在于挖掘数据背后的规律与洞察,更在于通过专业的报告呈现 ...
2026-02-05在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29