
Python中如何优雅的合并两个字典(dict)方法示例
字典是Python中最强大的数据类型之一,本文将给大家详细介绍关于Python合并两个字典(dict)的相关内容,分享出来供大家参考学习,话不多说了,来一起看看详细的介绍吧。
一行代码合并两个dict
假设有两个dict x和y,合并成一个新的dict,不改变 x和y的值,例如
x = {'a': 1, 'b': 2}
y = {'b': 3, 'c': 4}
期望得到一个新的结果Z,如果key相同,则y覆盖x。期望的结果是
>>> z
{'a': 1, 'b': 3, 'c': 4}
在PEP448中,有个新的语法可以实现,并且在python3.5中支持了该语法,合并代码如下
z = {**x, **y}
妥妥的一行代码。 由于现在很多人还在用python2,对于python2和python3.0-python3.4的人来说,有一个比较优雅的方法,但是需要两行代码。
z = x.copy()
z.update(y)
上面的方法,y都会覆盖x里的内容,所以最终结果b=3.
不使用python3.5如何一行完成了
如果您还没有使用Python 3.5,或者需要编写向后兼容的代码,并且您希望在单个表达式中运行,则最有效的方法是将其放在一个函数中:
def merge_two_dicts(x, y):
"""Given two dicts, merge them into a new dict as a shallow copy."""
z = x.copy()
z.update(y)
return z
然后一行代码完成调用:
z = merge_two_dicts(x, y)
你也可以定义一个函数,合并多个dict,例如
def merge_dicts(*dict_args):
"""
Given any number of dicts, shallow copy and merge into a new dict,
precedence goes to key value pairs in latter dicts.
"""
result = {}
for dictionary in dict_args:
result.update(dictionary)
return result
然后可以这样使用
z = merge_dicts(a, b, c, d, e, f, g)
所有这些里面,相同的key,都是后面的覆盖前面的。
一些不够优雅的示范
items
有些人会使用这种方法:
z = dict(x.items() + y.items())
这其实就是在内存中创建两个列表,再创建第三个列表,拷贝完成后,创建新的dict,删除掉前三个列表。这个方法耗费性能,而且对于python3,这个无法成功执行,因为items()返回是个对象。
>>> c = dict(a.items() + b.items())
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: unsupported operand type(s) for +: 'dict_items' and
'dict_items'
你必须明确的把它强制转换成list,z = dict(list(x.items()) + list(y.items())) ,这太浪费性能了。 另外,想以来于items()返回的list做并集的方法对于python3来说也会失败,而且,并集的方法,导致了重复的key在取值时的不确定,所以,如果你对两个dict合并有优先级的要求,这个方法就彻底不合适了。
>>> x = {'a': []}
>>> y = {'b': []}
>>> dict(x.items() | y.items())
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: unhashable type: 'list'
这里有一个例子,其中y应该具有优先权,但是由于任意的集合顺序,x的值被保留:
>>> x = {'a': 2}
>>> y = {'a': 1}
>>> dict(x.items() | y.items())
{'a': 2}
构造函数
也有人会这么用
z = dict(x, **y)
这样用很好,比前面的两步的方法高效多了,但是可阅读性差,不够pythonic,如果当key不是字符串的时候,python3中还是运行失败
>>> c = dict(a, **b)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: keyword arguments must be strings
Guido van Rossum 大神说了:宣告dict({}, {1:3})是非法的,因为毕竟是滥用机制。虽然这个方法比较hacker,但是太投机取巧了。
一些性能较差但是比较优雅的方法
下面这些方法,虽然性能差,但也比items方法好多了。并且支持优先级。
{k: v for d in dicts for k, v in d.items()}
python2.6中可以这样
dict((k, v) for d in dicts for k, v in d.items())
itertools.chain 将以正确的顺序将键值对上的迭代器链接:
import itertools
z = dict(itertools.chain(x.iteritems(), y.iteritems()))
性能测试
以下是在Ubuntu 14.04上完成的,在Python 2.7(系统Python)中:
>>> min(timeit.repeat(lambda: merge_two_dicts(x, y)))
0.5726828575134277
>>> min(timeit.repeat(lambda: {k: v for d in (x, y) for k, v in d.items()} ))
1.163769006729126
>>> min(timeit.repeat(lambda: dict(itertools.chain(x.iteritems(),y.iteritems()))))
1.1614501476287842
>>> min(timeit.repeat(lambda: dict((k, v) for d in (x, y) for k, v in d.items())))
2.2345519065856934
在python3.5中
>>> min(timeit.repeat(lambda: {**x, **y}))
0.4094954460160807
>>> min(timeit.repeat(lambda: merge_two_dicts(x, y)))
0.7881555100320838
>>> min(timeit.repeat(lambda: {k: v for d in (x, y) for k, v in d.items()} ))
1.4525277839857154
>>> min(timeit.repeat(lambda: dict(itertools.chain(x.items(), y.items()))))
2.3143140770262107
>>> min(timeit.repeat(lambda: dict((k, v) for d in (x, y) for k, v in d.items())))
3.2069112799945287
总结
以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作能带来一定的帮助
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-252025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-25从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-25用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18