
充分利用大数据 为社会治理提供决策支撑
随着信息技术与经济社会的交汇融合,大数据已经成为信息时代的基础资源,能有效集成国家经济、政治、文化、社会、生态等方面的信息资源。在社会治理中充分运用大数据分析提供的规律性结论,不仅有利于形成系统完备、科学规范、运行有效的治理体系,而且还能为社会治理提供决策支撑。
一
当前,我国经济社会发展进入新常态,社会治理面临新挑战和新机遇。
从挑战方面看,工业化、城镇化、信息化加速推进,城乡发展不平衡、区域发展不协调问题较为突出,大量“单位人”转变为“社会人”,大量常住人口变成流动人口,社会结构和利益格局发生深刻变化,传统的治理模式面临严峻挑战。与此同时,群众需求也随着物质生活条件逐步改善,特别是互联网、大数据广泛运用,人民群众对政务服务、民生保障的需求呈现出个性化、多样化的新特点,对服务的体验感、参与感、精准化提出更高要求。社会治理面临一些全新课题。
从机遇方面看,创新社会治理,是我国应对社会转型、化解社会矛盾、协调利益关系所面临的一项重大战略任务。针对目前社会治理领域普遍存在的一些问题,大数据技术通过对海量数据的快速收集与挖掘、及时研判与共享,成为支持社会治理科学决策和准确预判的有力手段,为转型期的社会治理带来了新机遇。未来,基于大数据的科学决策、精细管理、精准服务将成为常态,将大大推动社会治理模式进步,推进法治政府、创新政府、廉洁政府、智慧政府和服务型政府建设。
从国际视野看,美国、欧盟、日本等发达国家已经布局大数据战略,他们利用大数据形成新的经济增长业态和板块,更为重要的是,他们开始从战略层面认识大数据,在社会治理领域融入大数据思维,利用大数据技术系统逐步改造传统国家治理手段和治理体系。我们也要顺应时代发展趋势,充分利用大数据提升社会治理水平。
二
当前和今后一个时期,用大数据思维推进社会治理精准化,要在以下几方面下功夫:
完善大数据基础设施建设是基础。大数据时代,社会治理所需的数据和信息迅速增长,各项社会建设工作的开展、各种社会治理方式的创新和各种公共服务的提供都需要大量的基础数据与信息。如果没有掌握大量的基础数据与信息或者掌握的信息与数据不及时更新,决策者就难以真正及时了解社会的各种需求,也无法规划和选择合理的提供服务的路径与方式。因此,应建立全面覆盖、动态跟踪、指标齐全的社会治理基础信息平台,以人口基础信息为核心,借助居住信息系统、就业登记信息系统和房屋出租管理系统,整合违法犯罪信息、网络舆情信息、公共卫生信息、环境状况信息、劳资关系信息、突发事件信息等多种信息源和社会统计资源,提高新形势下社会治理信息化水平。
数据安全与数据深度应用是关键。技术往往是一把双刃剑。大数据的收集和使用可能涉及国家信息安全和公民隐私等,需要在立法层面明确大数据采集和使用的原则。要权衡数据开放与个人隐私和商业秘密保护、国家信息安全与社会数据需求之间的关系,制定严格规范的数据采集、储存、处理、推送和应用流程。要在技术上通过信息系统的软硬件投入来保障信息安全。大数据平台本身的安全性也应引起重视,需要国家相关部门制定大数据技术标准和运营规范,重视大数据及信息安全体系建设,加强对重点领域敏感数据的监管。要充分重视数据和信息在采集、应用过程中的制度建设。需要注意的是,数据的应用开放共享必须有边界、有规则、有步骤,并根据相关法律和约定对开放对象数据使用情况进行监管,从而实现数据开放需求、隐私保护需求和安全保障需求之间的平衡。数据的开放和流动、使用和共享,能进一步降低治理成本、提高治理效率,从而进一步提升治理的效能。
转变政府职能是保障。大数据时代社会治理方式创新必须转变政府职能,建设服务型政府,充分运用大数据系统,提升政府便民服务水平,提高政府行政管理效能。随着信息技术的发展,每个社会成员均可利用信息化手段表达自己的意愿和看法,形成海量的“微数据”和“微事件”。决策者往往要对海量的实时数据进行掌握和挖掘,将分散的小概率事件有序关联起来,突破“信息孤岛”限制,排除各种垃圾信息的误导和干扰,把握数据中蕴含的规律性、倾向性问题,提高公共决策的科学化水平,更好地回应公众关切,满足公众需求和期待。如,可以借助热力图直观显示不同区域居民需求的分布情况,便于掌握居民诉求的变化;也可以单位时间内的出现频率为依据,通过主动搜索等方式追踪热词,进而确定社会热点问题,实现将大数据分析、追踪、预测的成果转化为决策者的重要参考,及时发现、预防和控制社会事件的发生,等等。与此同时,通过全面联网,充分调动各方面积极性,在及时解决居民生活和工作难题的同时,推进社会主体积极参与社会治理。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29