京公网安备 11010802034615号
经营许可证编号:京B2-20210330
充分利用大数据 为社会治理提供决策支撑
随着信息技术与经济社会的交汇融合,大数据已经成为信息时代的基础资源,能有效集成国家经济、政治、文化、社会、生态等方面的信息资源。在社会治理中充分运用大数据分析提供的规律性结论,不仅有利于形成系统完备、科学规范、运行有效的治理体系,而且还能为社会治理提供决策支撑。
一
当前,我国经济社会发展进入新常态,社会治理面临新挑战和新机遇。
从挑战方面看,工业化、城镇化、信息化加速推进,城乡发展不平衡、区域发展不协调问题较为突出,大量“单位人”转变为“社会人”,大量常住人口变成流动人口,社会结构和利益格局发生深刻变化,传统的治理模式面临严峻挑战。与此同时,群众需求也随着物质生活条件逐步改善,特别是互联网、大数据广泛运用,人民群众对政务服务、民生保障的需求呈现出个性化、多样化的新特点,对服务的体验感、参与感、精准化提出更高要求。社会治理面临一些全新课题。
从机遇方面看,创新社会治理,是我国应对社会转型、化解社会矛盾、协调利益关系所面临的一项重大战略任务。针对目前社会治理领域普遍存在的一些问题,大数据技术通过对海量数据的快速收集与挖掘、及时研判与共享,成为支持社会治理科学决策和准确预判的有力手段,为转型期的社会治理带来了新机遇。未来,基于大数据的科学决策、精细管理、精准服务将成为常态,将大大推动社会治理模式进步,推进法治政府、创新政府、廉洁政府、智慧政府和服务型政府建设。
从国际视野看,美国、欧盟、日本等发达国家已经布局大数据战略,他们利用大数据形成新的经济增长业态和板块,更为重要的是,他们开始从战略层面认识大数据,在社会治理领域融入大数据思维,利用大数据技术系统逐步改造传统国家治理手段和治理体系。我们也要顺应时代发展趋势,充分利用大数据提升社会治理水平。
二
当前和今后一个时期,用大数据思维推进社会治理精准化,要在以下几方面下功夫:
完善大数据基础设施建设是基础。大数据时代,社会治理所需的数据和信息迅速增长,各项社会建设工作的开展、各种社会治理方式的创新和各种公共服务的提供都需要大量的基础数据与信息。如果没有掌握大量的基础数据与信息或者掌握的信息与数据不及时更新,决策者就难以真正及时了解社会的各种需求,也无法规划和选择合理的提供服务的路径与方式。因此,应建立全面覆盖、动态跟踪、指标齐全的社会治理基础信息平台,以人口基础信息为核心,借助居住信息系统、就业登记信息系统和房屋出租管理系统,整合违法犯罪信息、网络舆情信息、公共卫生信息、环境状况信息、劳资关系信息、突发事件信息等多种信息源和社会统计资源,提高新形势下社会治理信息化水平。
数据安全与数据深度应用是关键。技术往往是一把双刃剑。大数据的收集和使用可能涉及国家信息安全和公民隐私等,需要在立法层面明确大数据采集和使用的原则。要权衡数据开放与个人隐私和商业秘密保护、国家信息安全与社会数据需求之间的关系,制定严格规范的数据采集、储存、处理、推送和应用流程。要在技术上通过信息系统的软硬件投入来保障信息安全。大数据平台本身的安全性也应引起重视,需要国家相关部门制定大数据技术标准和运营规范,重视大数据及信息安全体系建设,加强对重点领域敏感数据的监管。要充分重视数据和信息在采集、应用过程中的制度建设。需要注意的是,数据的应用开放共享必须有边界、有规则、有步骤,并根据相关法律和约定对开放对象数据使用情况进行监管,从而实现数据开放需求、隐私保护需求和安全保障需求之间的平衡。数据的开放和流动、使用和共享,能进一步降低治理成本、提高治理效率,从而进一步提升治理的效能。
转变政府职能是保障。大数据时代社会治理方式创新必须转变政府职能,建设服务型政府,充分运用大数据系统,提升政府便民服务水平,提高政府行政管理效能。随着信息技术的发展,每个社会成员均可利用信息化手段表达自己的意愿和看法,形成海量的“微数据”和“微事件”。决策者往往要对海量的实时数据进行掌握和挖掘,将分散的小概率事件有序关联起来,突破“信息孤岛”限制,排除各种垃圾信息的误导和干扰,把握数据中蕴含的规律性、倾向性问题,提高公共决策的科学化水平,更好地回应公众关切,满足公众需求和期待。如,可以借助热力图直观显示不同区域居民需求的分布情况,便于掌握居民诉求的变化;也可以单位时间内的出现频率为依据,通过主动搜索等方式追踪热词,进而确定社会热点问题,实现将大数据分析、追踪、预测的成果转化为决策者的重要参考,及时发现、预防和控制社会事件的发生,等等。与此同时,通过全面联网,充分调动各方面积极性,在及时解决居民生活和工作难题的同时,推进社会主体积极参与社会治理。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27