
python处理csv数据的方法
本文实例讲述了python处理csv数据的方法。分享给大家供大家参考。具体如下:
Python代码:
代码如下:
#coding=utf-8
__author__ = 'dehua.li'
from datetime import *
import datetime
import csv
import sys
import time
import string
import os
import os.path
import pylab as plt
rootdir='/nethome/dehua.li/orderlifeCycleData/xingzheng'
writeFileDir="/nethome/dehua.li/orderlifeMyWork/xingzheng/csv"
heyueFile="/nethome/dehua.li/orderlifeCycleData/heyue_150128.csv"
ms_acked="1"
msg=[]
ex=[]
def getTheDate(date):
[filenamePart1,filenamePart2]=string.split(filename,'.')
[filenamePart11,filenamePart12,filenamePart13]=string.split(filenamePart1,'_')
return filenamePart13
LocalTime=datetime.datetime.fromtimestamp(time.mktime(time.strptime("2014-11-04 20:59:59","%Y-%m-%d %H:%M:%S")))
for parent,dirname,filenames in os.walk(rootdir):
for filename in filenames:
fileNameWrite=os.path.join(writeFileDir,filename)
print fileNameWrite
csvfile00=open(fileNameWrite,'wb')
writer1=csv.writer(csvfile00)
writer1.writerow(['FeedCode','OrderId','Status','LocalTime','Time','Exchange'])
fileName=os.path.join(parent,filename)
[filenamePart1,filenamePart2]=string.split(filename,'.')
[filenamePart11,filenamePart12,filenamePart13]=string.split(filenamePart1,'_')
#filenamePart11_filenamePart12_filenamePart13.filenamePart2:dongzheng_orderlifeCycleData_20150111.csv
print fileName
with open(fileName,'rb') as csvfile:
reader=csv.reader(csvfile)
CsvItem=[row for row in reader]
for item in CsvItem:
if item[3]=='TPO':
#print " filter TPO "
continue
if item[12]=='Sent':
[tm_local,ms_local]=string.split(item[15],'.')
[tm_localup,ms_localup]=string.split(item[19],'.')
LocalTime=datetime.datetime.fromtimestamp(time.mktime(time.strptime(tm_local,"%Y-%m-%d %H:%M:%S")))
LocalUpdate=datetime.datetime.fromtimestamp(time.mktime(time.strptime(tm_localup,"%Y-%m-%d %H:%M:%S")))
tm=int(((LocalTime-LocalUpdate).seconds))*1000
ms_sent=str(int(ms_local)-int(ms_localup)+tm)
if int(ms_sent)>10*60*1000:
print "ms_sent>600000"
continue
if(int(ms_local)-int(ms_localup)+tm)<0:
print 'wrong1'
msg=[]
msg.append(item[0])
msg.append(item[1])
msg.append(item[12])
msg.append(item[15])
msg.append(ms_sent)
with open(heyueFile,'rb') as csvfile1:
reader=csv.reader(csvfile1)
CsvItem=[row for row in reader]
for Item in CsvItem:
if Item[1]==item[0]:
msg.append(Item[3])
writer1.writerow(msg)
#print 'write ok'
ex=Item[3]
break
csvfile1.close()
with open(fileName,'rb') as csvfile22:
reader=csv.reader(csvfile22)
CsvItem2=[row for row in reader]
for item_ in CsvItem2:
if item_[12]=='Acked' and item_[1]==item[1]:
[tm_local2,ms_local2]=string.split(item_[15],'.')
LocalTime2=datetime.datetime.fromtimestamp(time.mktime(time.strptime(tm_local2,"%Y-%m-%d %H:%M:%S")))
tm2=int(((LocalTime2-LocalTime).seconds))*1000
ms_acked=str(int(ms_local2)-int(ms_local)+tm2)
if int(ms_acked)>10*60*1000:
print "MSacked>600000"
continue
msg=[]
msg.append(item_[0])
msg.append(item_[1])
msg.append(item_[12])
msg.append(item_[15])
msg.append(ms_acked)
with open(heyueFile,'rb') as csvfile111:
reader=csv.reader(csvfile111)
CsvItem=[row for row in reader]
for Item in CsvItem:
if Item[1]==item[0]:
msg.append(Item[3])
writer1.writerow(msg)
#print 'write ok'
break
#print "write ok"
csvfile22.close()
csvfile.close()
csvfile00.close()
代码如下:
#coding=utf-8
#__author__ = 'dehua.li'
from datetime import *
import datetime
import csv
import sys
import time
import string
import os
import os.path
import pylab as plt
def median(lst):
even = (0 if len(lst) % 2 else 1) + 1
half = (len(lst) - 1) / 2
return sum(sorted(lst)[half:half + even]) / float(even)
def mean(lst):
if len(lst)==0:
return 0
return sum(lst)/len(lst)
nightLine="21:01:00"
morningLine="09:01:00"
def getTheDate(date):
[filenamePart1,filenamePart2]=string.split(filename,'.')
[filenamePart11,filenamePart12,filenamePart13]=string.split(filenamePart1,'_')
return filenamePart13
def afterOneMin(time):
[tm_local,ms_local]=string.split(time,'.')
[ymd,hms]=string.split(tm_local,' ')
flag=0
if hms>"21:01:00":
flag=1
elif hms>"09:01:00" and hms<"20:00:00":
flag=1
elif hms>"00:00:00" and hms<"05:00:00":
flag=1
return flag
rootdir="/nethome/dehua.li/orderlifeMyWork/xingzheng/csv"
#csvfileMaxMin = open('e:\dehua.li\csv\__xingzhenMaxMin.csv','wb')
#writer1 = csv.writer(csvfileMaxMin)
#writer1.writerow(['FeedCode','date','SentMaxTime','SentMaxLocalTime','SentMinTime','SentMinLocalTime','SentMeanTime','SentMedian','AckedMaxTime','AckedMaxLocalTime','AckedMinTime','AckedMinLocalTime','AckedMeanTime','AckedMedianTime','Exchange'])
#writer1.writerow(['FeedCode','date','SentMaxTime','SentMinTime','SentMeanTime','SentMedian','AckedMaxTime','AckedMinTime','AckedMeanTime','AckedMedianTime','Exchange'])
msg=[]
codeList=list()
orderList=list()
itemSentList=[]
itemAckedList=[]
feedCode=[]
exchange=[]
zhengshangSentMedian=0
zhengshangSentMean=0
zhengshangAckedMedian=0
zhengshangAckedMean=0
dashangSentMedian=0
dashangSentMean=0
dashangAckedMedian=0
dashangAckedMean=0
shangqiSentMedian=0
shangqiSentMean=0
shangqiAckedMedian=0
shangqiAckedMean=0
zhongjinSentMedian=0
zhongjinSentMean=0
zhongjinAckedMedian=0
zhongjinAckedMean=0
zhengshangSent=[]
zhengshangAcked=[]
dashangSent=[]
dashangAcked=[]
shangqiSent=[]
shangqiAcked=[]
zhongjinSent=[]
zhongjinAcked=[]
zhengshangSentMedianAll=[]
zhengshangSentMeanAll=[]
zhengshangAckedMedianAll=[]
zhengshangAckedMeanAll=[]
dashangSentMedianAll=[]
dashangSentMeanAll=[]
dashangAckedMedianAll=[]
dashangAckedMeanAll=[]
shangqiSentMedianAll=[]
shangqiSentMeanAll=[]
shangqiAckedMedianAll=[]
shangqiAckedMeanAll=[]
zhongjinSentMedianAll=[]
zhongjinSentMeanAll=[]
zhongjinAckedMedianAll=[]
zhongjinAckedMeanAll=[]
zhengshang='0'
dashang='0'
shangqi='0'
zhongjin='0'
with open('/nethome/dehua.li/orderlifeCycleData/heyue_150128.csv','rb') as csvfile:
reader=csv.reader(csvfile)
csvItem=[row for row in reader]
zhengshang=csvItem[300][3]
dashang=csvItem[5][3]
shangqi=csvItem[165][3]
zhongjin=csvItem[435][3]
#for item in csvItem:
# if item[3]==zhengshang:
# print item
for parent,dirname,filenames in os.walk(rootdir):
for filename in filenames:
fileName=os.path.join(rootdir,filename)
csvfile1=open(fileName,'rb')
reader=csv.reader(csvfile1)
CsvItem=[row for row in reader]
for item in CsvItem:
if item[0]=='FeedCode':
continue
if item[0] not in codeList:
codeList.append(item[0])
#print CsvItem[15]
if len(item)<=5:
print fileName
print item
print '++++++++++++++++++++++++++++++'
#if afterOneMin(item[3])==0:
# print item[3]
# continue
if item[5]==zhengshang and item[2]=='Sent':
zhengshangSent.append(int(item[4]))
elif item[5]==zhengshang and item[2]=='Acked':
zhengshangAcked.append(int(item[4]))
elif item[5]==dashang and item[2]=='Sent':
dashangSent.append(int(item[4]))
elif item[5]==dashang and item[2]=='Acked':
dashangAcked.append(int(item[4]))
elif item[5]==shangqi and item[2]=='Sent':
shangqiSent.append(int(item[4]))
if int(item[4])>=600000:
print "------------"
print item
elif item[5]==shangqi and item[2]=='Acked':
shangqiAcked.append(int(item[4]))
elif item[5]==zhongjin and item[2]=='Sent':
zhongjinSent.append(int(item[4]))
elif item[5]==zhongjin and item[2]=='Acked':
zhongjinAcked.append(int(item[4]))
else:
print "wrong info"
print item
if mean(shangqiSent)>420000:
print sum(shangqiSent)
print len(shangqiSent)
print item
print fileName
print shangqiSent
zhengshangSentMedian=median(zhengshangSent)
zhengshangSentMean=mean(zhengshangSent)
zhengshangAckedMedian=median(zhengshangAcked)
zhengshangAckedMean=mean(zhengshangAcked)
dashangSentMedian=median(dashangSent)
dashangSentMean=mean(dashangSent)
dashangAckedMedian=median(dashangAcked)
dashangAckedMean=mean(dashangAcked)
shangqiSentMedian=median(shangqiSent)
shangqiSentMean=mean(shangqiSent)
shangqiAckedMedian=median(shangqiAcked)
shangqiAckedMean=mean(shangqiAcked)
zhongjinSentMedian=median(zhongjinSent)
zhongjinSentMean=mean(zhongjinSent)
zhongjinAckedMedian=median(zhongjinAcked)
zhongjinAckedMean=mean(zhongjinAcked)
#if mean(shangqiSent)>70:
# print '================================'
# print fileName
#print codeList
'''
for listItem in codeList:
itemSentList=[]
itemAckedList=[]
for item in CsvItem:
if item[0]==listItem and item[2]=='Sent':
itemSentList.append(int(item[4]))
exchange=item[5]
elif item[0]==listItem and item[2]=='Acked':
itemAckedList.append(int(item[4]))
#print itemSentList
itemMaxSent=max(itemSentList)
itemMinSent=min(itemSentList)
itemAvgSent=sum(itemSentList)/len(itemSentList)
itemMaxAcked=max(itemAckedList)
itemMinAcked=min(itemAckedList)
itemAvgAcked=sum(itemAckedList)/len(itemAckedList)
SentMedian=median(itemSentList)
AckedMedian=median(itemAckedList)
msg=[]
msg.append(listItem) #0
msg.append("2015/01/14") #1
msg.append(itemMaxSent) #2
msg.append(itemMinSent) #3
msg.append(itemAvgSent) #4
msg.append(SentMedian) #5
msg.append(itemMaxAcked) #6
msg.append(itemMinAcked) #7
msg.append(itemAvgAcked) #8
msg.append(AckedMedian) #9
msg.append(exchange) #10
if len(msg)>15:
print "------------------------------"
print msg
writer1.writerow(msg)
'''
zhengshangSentMedianAll.append(zhengshangSentMedian)
zhengshangSentMeanAll.append(zhengshangSentMean)
zhengshangAckedMedianAll.append(zhengshangAckedMedian)
zhengshangAckedMeanAll.append(zhengshangAckedMean)
dashangSentMedianAll.append(dashangSentMedian)
dashangSentMeanAll.append(dashangSentMean)
dashangAckedMedianAll.append(dashangAckedMedian)
dashangAckedMeanAll.append(dashangAckedMean)
shangqiSentMedianAll.append(shangqiSentMedian)
shangqiSentMeanAll.append(shangqiSentMean)
shangqiAckedMedianAll.append(shangqiAckedMedian)
shangqiAckedMeanAll.append(shangqiAckedMean)
zhongjinSentMedianAll.append(zhongjinSentMedian)
zhongjinSentMeanAll.append(zhongjinSentMean)
zhongjinAckedMedianAll.append(zhongjinAckedMedian)
zhongjinAckedMeanAll.append(zhongjinAckedMean)
plt.figure(1)
plt.figure(2)
plt.figure(3)
plt.figure(4)
plt.figure(1)
plt.title('SentMean r-zhengshang b-dashang,green-shangqi grey-zhongjin')
plt.plot(range(1,len(zhengshangSentMeanAll)+1),zhengshangSentMeanAll,'r')
plt.plot(range(1,len(dashangSentMeanAll)+1),dashangSentMeanAll,'b')
plt.plot(range(1,len(shangqiSentMeanAll)+1),shangqiSentMeanAll,'g')
plt.plot(range(1,len(zhongjinSentMeanAll)+1),zhongjinSentMeanAll,'grey')
plt.savefig('/nethome/dehua.li/orderlifeMyWork/xingzheng/data_noTPO_in10minutes/SentMean.png')
plt.figure(2)
plt.title('SentMedian r-zhengshang b-dashang,green-shangqi grey-zhongjin')
plt.plot(range(1,len(zhengshangSentMedianAll)+1),zhengshangSentMedianAll,'r')
plt.plot(range(1,len(dashangSentMedianAll)+1),dashangSentMedianAll,'b')
plt.plot(range(1,len(shangqiSentMedianAll)+1),shangqiSentMedianAll,'g')
plt.plot(range(1,len(zhongjinSentMedianAll)+1),zhongjinSentMedianAll,'grey')
plt.savefig('/nethome/dehua.li/orderlifeMyWork/xingzheng/data_noTPO_in10minutes/SentMedian.png')
plt.figure(3)
plt.title('AckedMean r-zhengshang b-dashang,green-shangqi grey-zhongjin')
plt.plot(range(1,len(zhengshangAckedMeanAll)+1),zhengshangAckedMeanAll,'r')
plt.plot(range(1,len(dashangAckedMeanAll)+1),dashangAckedMeanAll,'b')
plt.plot(range(1,len(shangqiAckedMeanAll)+1),shangqiAckedMeanAll,'g')
plt.plot(range(1,len(zhongjinAckedMeanAll)+1),zhongjinAckedMeanAll,'grey')
plt.savefig('/nethome/dehua.li/orderlifeMyWork/xingzheng/data_noTPO_in10minutes/AckedMean.png')
plt.figure(4)
plt.title('AckedMedian r-zhengshang b-dashang,green-shangqi grey-zhongjin')
plt.plot(range(1,len(zhengshangAckedMedianAll)+1),zhengshangAckedMedianAll,'r')
plt.plot(range(1,len(dashangAckedMedianAll)+1),dashangAckedMedianAll,'b')
plt.plot(range(1,len(shangqiAckedMedianAll)+1),shangqiAckedMedianAll,'g')
plt.plot(range(1,len(zhongjinAckedMedianAll)+1),zhongjinAckedMedianAll,'grey')
plt.savefig('/nethome/dehua.li/orderlifeMyWork/xingzheng/data_noTPO_in10minutes/AckedMedian.png')
plt.show()
print 'over'
希望本文所述对大家的Python程序设计有所帮助。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02