京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据智能匹配:目标用户在哪里,广告就到哪里
随着移动终端的深度普及,移动互联网已逐渐成为信息的第一接收口,而庞大的移动端用户量意味着巨大的潜在营销价值。2017年自媒体营销无疑将发展得更为成熟,更多营销方式亟待深入挖掘,谁能洞悉营销先机谁就能抢占新一轮自媒体红利。对于品牌主而言,如何通过合适的媒体将品牌信息精准触达目标用户,如何洞悉用户在移动应用场景下的情感流动和互动需求,引发其主动传播裂变营销效果,成为全新的营销切入点。
大数据:洞悉每一分广告费花在哪里
著名广告大师约翰·沃纳梅克提出:我知道我的广告费有一半浪费了,但遗憾的是,我不知道是哪一半被浪费了。这个广告界难题就像“哥德巴赫猜想”一样长期困扰着品牌主。由于不清楚目标用户在哪里,通过什么途径才能将广告信息精准推送到目标用户面前,以往只能靠撒天网式的广告尽可能多地覆盖用户,这样盲目投广告的确会浪费不少广告费,品牌主往往不清楚每一分广告费花在了哪里,带来了什么样的营销效果。
那么,如何才能节省那一半广告费,将钱花在刀刃上呢?一站式智能营销平台城外圈以“广告好效果”为核心目标,致力于为品牌主解决营销问题。随着大数据技术的快速发展,移动端网络用户的行为追踪变得更为便利。城外圈抓住这一营销切入点,以“智能大数据”为核心驱动力,通过网民行为追踪以分析其消费行为,建立用户数据库,广告受众便细分到了某类人群,品牌主可以针对某类人群进行“一对一”的广告投放,广告的精准投放得到进一步优化。通过大数据智能分析,品牌主可以清楚了解每一分广告费花在了哪些地方,花在了哪些用户身上。
智能匹配:目标用户在哪里,广告就到哪里
大数据精准营销的核心在于让广告在合适的时间,通过合适的媒体,以合适的方式,投给合适的用户群体。
据悉,一站式智能营销平台城外圈全新升级后,优化了“智能诊断”服务功能,通过独家智能算法,使品牌和媒体得以更好地匹配。以往,有不少品牌主在广告媒体平台选择投放媒体时,因对媒体不了解而出现盲目选择的情况。为此,城外圈借助强大的媒体数据挖掘系统,对目标媒体账号进行详细数据分析,包括账号粉丝数、预估有效阅读数、CWQ指数等基本媒体数据;男女粉比例、年龄层占比、地域分布、图文热词统计等媒体用户画像数据;时间段内总阅读、平均阅读、头/次条点赞、10W+阅读文章数统计等媒体影响力数据;周阅读趋势图、工作日以及周末发布时间柱形图等图表分析数据,以大数据分析方法实现对媒体传播价值客观、准确的量化评估,从而让品牌清楚自己的目标用户在哪里,可以通过哪些媒体进行精准广告营销。
(图片来源:一站式智能营销平台城外圈)
以微信公众号的筛选为例。当品牌主在城外圈选择某个感兴趣的微信公众账号时,不但能快速了解该账号的粉丝数、预估有效阅读数、入驻时间等,还能获取参与该账号粉丝数、阅读数,粉丝用户的男女比例、年龄比例、职业分布、地域分布及用户的阅读偏好。城外圈以图文热词标签化呈现媒体文章内容数据,让品牌主清楚直观地判断媒体背后的粉丝画像与自身的目标传播人群属性是否吻合。所以,智能大数据技术让品牌营销告别了以往的“粗放式、广撒网”,通过智能匹配合适的媒体来进行广告传播,从而有效触达目标用户。
场景营销:激发用户主动分享传播
要达到广告好效果,除了要通过合适的媒体精准触达目标用户以外,还要争取与用户建立联系,将用户的潜在购买力转变为实际消费行为,将用户的品牌偏好转变为对品牌的忠诚,甚至激发用户主动分享传播,使广告达到裂变式的传播效果。
灵活运用场景营销,通过搭建不同的场景来将品牌信息传播给用户,满足用户互动的心理需求,可有效加强用户体验,从而提升其对品牌的印象。当用户在互动场景中产生自主分享传播的行为,将原来的一级传播,变成社群化的二级、三级甚至更多级别的深度传播,这个过程的宣传覆盖量将呈几何数量级裂变增长,同时也会使得覆盖人群数据越发精准化,拓宽品牌影响力的同时,也将构建起品牌自身的宣传推广精准资源体系,毕竟只有感兴趣的人才会主动分享传播。
场景营销的投放渠道集中在移动端,用户围绕移动终端产生诸多场景,并由此生成大量数据,这些都为场景营销在移动端的开展提供了有利条件。一站式智能营销平台城外圈洞悉当前自媒体营销的发展趋向,通过智能大数据技术,集移动广告需求方平台、媒体智投系统、舆情效果追踪服务三位一体,为品牌主量身定制一站式移动营销解决方案,通过高效便捷的一站式移动媒体投放,助力品牌主实现移动广告投放最优性价比,使其在激烈的市场竞争中脱颖而出。
在移动互联网时代,谁掌握了大数据谁就赢得了营销先机。在此趋势下,广大品牌主只有对接拥有大数据技术且更加智能化的广告媒体平台,才能进一步提升其营销能力,从而在新一轮的自媒体营销大潮中抢占先机!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27