京公网安备 11010802034615号
经营许可证编号:京B2-20210330
详解Python实现多进程异步事件驱动引擎
本篇文章主要介绍了详解Python实现多进程异步事件驱动引擎,小编觉得挺不错的,现在分享给大家,也给大家做个参考。
多进程异步事件驱动逻辑
逻辑
code
# -*- coding: utf-8 -*-
'''
author: Jimmy
contact: 234390130@qq.com
file: eventEngine.py
time: 2017/8/25 上午10:06
description: 多进程异步事件驱动引擎
'''
__author__ = 'Jimmy'
from multiprocessing import Process, Queue
class EventEngine(object):
# 初始化事件事件驱动引擎
def __init__(self):
#保存事件列表
self.__eventQueue = Queue()
#引擎开关
self.__active = False
#事件处理字典{'event1': [handler1,handler2] , 'event2':[handler3, ...,handler4]}
self.__handlers = {}
#保存事件处理进程池
self.__processPool = []
#事件引擎主进程
self.__mainProcess = Process(target=self.__run)
#执行事件循环
def __run(self):
while self.__active:
#事件队列非空
if not self.__eventQueue.empty():
#获取队列中的事件 超时1秒
event = self.__eventQueue.get(block=True ,timeout=1)
#执行事件
self.__process(event)
else:
# print('无任何事件')
pass
#执行事件
def __process(self, event):
if event.type in self.__handlers:
for handler in self.__handlers[event.type]:
#开一个进程去异步处理
p = Process(target=handler, args=(event, ))
#保存到进程池
self.__processPool.append(p)
p.start()
#开启事件引擎
def start(self):
self.__active = True
self.__mainProcess.start()
#暂停事件引擎
def stop(self):
"""停止"""
# 将事件管理器设为停止
self.__active = False
# 等待事件处理进程退出
for p in self.__processPool:
p.join()
self.__mainProcess.join()
#终止事件引擎
def terminate(self):
self.__active = False
#终止所有事件处理进程
for p in self.__processPool:
p.terminate()
self.__mainProcess.join()
#注册事件
def register(self, type, handler):
"""注册事件处理函数监听"""
# 尝试获取该事件类型对应的处理函数列表,若无则创建
try:
handlerList = self.__handlers[type]
except KeyError:
handlerList = []
self.__handlers[type] = handlerList
# 若要注册的处理器不在该事件的处理器列表中,则注册该事件
if handler not in handlerList:
handlerList.append(handler)
def unregister(self, type, handler):
"""注销事件处理函数监听"""
# 尝试获取该事件类型对应的处理函数列表,若无则忽略该次注销请求
try:
handlerList = self.__handlers[type]
# 如果该函数存在于列表中,则移除
if handler in handlerList:
handlerList.remove(handler)
# 如果函数列表为空,则从引擎中移除该事件类型
if not handlerList:
del self.__handlers[type]
except KeyError:
pass
def sendEvent(self, event):
#发送事件 像队列里存入事件
self.__eventQueue.put(event)
class Event(object):
#事件对象
def __init__(self, type =None):
self.type = type
self.dict = {}
#测试
if __name__ == '__main__':
import time
EVENT_ARTICAL = "Event_Artical"
# 事件源 公众号
class PublicAccounts:
def __init__(self, eventManager):
self.__eventManager = eventManager
def writeNewArtical(self):
# 事件对象,写了新文章
event = Event(EVENT_ARTICAL)
event.dict["artical"] = u'如何写出更优雅的代码\n'
# 发送事件
self.__eventManager.sendEvent(event)
print(u'公众号发送新文章\n')
# 监听器 订阅者
class ListenerTypeOne:
def __init__(self, username):
self.__username = username
# 监听器的处理函数 读文章
def ReadArtical(self, event):
print(u'%s 收到新文章' % self.__username)
print(u'%s 正在阅读新文章内容:%s' % (self.__username, event.dict["artical"]))
class ListenerTypeTwo:
def __init__(self, username):
self.__username = username
# 监听器的处理函数 读文章
def ReadArtical(self, event):
print(u'%s 收到新文章 睡3秒再看' % self.__username)
time.sleep(3)
print(u'%s 正在阅读新文章内容:%s' % (self.__username, event.dict["artical"]))
def test():
listner1 = ListenerTypeOne("thinkroom") # 订阅者1
listner2 = ListenerTypeTwo("steve") # 订阅者2
ee = EventEngine()
# 绑定事件和监听器响应函数(新文章)
ee.register(EVENT_ARTICAL, listner1.ReadArtical)
ee.register(EVENT_ARTICAL, listner2.ReadArtical)
for i in range(0, 20):
listner3 = ListenerTypeOne("Jimmy") # 订阅者X
ee.register(EVENT_ARTICAL, listner3.ReadArtical)
ee.start()
#发送事件
publicAcc = PublicAccounts(ee)
publicAcc.writeNewArtical()
test()
以上就是本文的全部内容,希望对大家的学习有所帮助.
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22