京公网安备 11010802034615号
经营许可证编号:京B2-20210330
浅谈Python中的可变对象和不可变对象
什么是可变/不可变对象
不可变对象,该对象所指向的内存中的值不能被改变。当改变某个变量时候,由于其所指的值不能被改变,相当于把原来的值复制一份后再改变,这会开辟一个新的地址,变量再指向这个新的地址。
可变对象,该对象所指向的内存中的值可以被改变。变量(准确的说是引用)改变后,实际上是其所指的值直接发生改变,并没有发生复制行为,也没有开辟新的出地址,通俗点说就是原地改变。
Python中,数值类型(int和float)、字符串str、元组tuple都是不可变类型。而列表list、字典dict、集合set是可变类型。
还是看代码比较直观。先看不可变对象
不可变对象的例子
先说明一点is 就是判断两个对象的id是否相同, 而 == 判断的则是内容是否相同。
a = 2
b = 2
c = a + 0
c += 0
print(id(a), id(b), id(2)) # id都相同
print(c is b) #True
再来看字符串
astr = 'good'
bstr = 'good'
cstr = astr + ''
print(cstr is bstr) # True
print(id(astr), id(bstr), id('good')) # 三个id相同
和数值类型的结果一样。如果是下面这种情况,变量修改后不在是good
astr = 'good'
print(id(astr))
astr += 'aa'
print(id(astr)) # id和上面的不一样
由于是不可变对象,变量对应内存的值不允许被改变。当变量要改变时,实际上是把原来的值复制一份后再改变,开辟一个新的地址,astr再指向这个新的地址(所以前后astr的id不一样),原来astr对应的值因为不再有对象指向它,就会被垃圾回收。这对于int和float类型也是一样的。
再看tuple
add = (1, 2, 3)
aee = (1, 2, 3)
print(id(add), id(aee), id((1, 2, 3))) # id各不相同
aee = (1, 2, 3)
print(id(aee))
aee += () # 加空元组
print(id(aee)) # id变了!
print(aee) #(1 ,2,3)
虽然看上去都是(1 ,2, 3)按理说应该和上面一致才对。难道这是可变对象?再看
add = (1, 2, 3)
aee = add
print(id(aee), id(add)) # 这两个id一样
aee += (4, 5, 6)
print(id(aee)) # aee的id变了!
print(add) # add还是(1, 2, 3)没有变
又和数值类型于str类型一致了。如果是可变对象add = aee,它们指向同一地址(id相同)是肯定的。但不是同一对象的不同引用,因为如果是的话,aee的改变会引起add的改变,再tuple中并不是这样。所以tuple是不可变对象,但又和str和数值类型稍微有点区别。平常说的tuple不可变更多时候是指里面存放的值不能被改变(有些特殊情况,如tuple里面存放了list,可改变list里的元素。但实际上这个tuple并没有被改变)。
对于str、int、float只要在它们再类型相同的情况下,值也相同,那么它们的id相同。(为什么要说类型相同?)
a = 2.0
b = 2
print(a is b) # False, 一个int一个float,类型都不同
2和2.0就不在一个地址上。
可变对象的例子
lis = [1, 2, 3]
lis2 = [1, 2, 3]
# 虽然它们的内容一样,但是它们指向的是不同的内存地址
print(lis is lis2)
print(id(lis), id(lis2), id([1, 2, 3])) # 三个id都不同
再看赋值的情况下
alist = [1, 2, 3]
# alist实际上是对对象的引用,blist = alist即引用的传递,现在两个引用都指向了同一个对象(地址)
blist = alist
print(id(alist), id(blist)) # id一样
# 所以其中一个变化,会影响到另外一个
blist.append(4)
print(alist) # 改变blist, alist也变成了[1 ,2 ,3 4]
print(id(alist), id(blist)) # id一样,和上面值没有改变时候的id也一样
blist = alist这一句。alist实际上是对对象的引用,blist = alist即引用的传递,现在两个引用都指向了同一个对象(地址)。所以其中一个变化,会影响到另外一个
再看看set
abb = {1, 2, 3}
acc = abb
print(id(abb), id(acc))
acc.add(4)
print(abb) # {1, 2, 3, 4}
print(id(abb), id(acc)) # 相等
和上面list的例子一致。
可变对象由于所指对象可以被修改,所以无需复制一份之后再改变,直接原地改变,所以不会开辟新的内存,改变前后id不变。
当然不可变对象就不是这样了, 可以和这个对比一下
abc = 3
dd = abc
dd = 43
print(abc) # 3,并不随dd的改变而改变
但是如果是拷贝,就仅仅是将内容拷贝过去,传递的并是不引用。这在想使用列表的值又不想修改原列表的时候特别有用。
blist = alist[:] # or alist.copy()
print(alist is blist) # False
blist.append(4)
print(alist) # 还是[1,2 ,3]没有变化
作为函数参数
作为函数参数,也是一样的,可变类型传递的是引用,不可变类型传递的是内容。
test_list = [1, 2, 3, 4]
test_str = 'HAHA'
def change(alist):
alist.append(5)
def not_change(astr):
astr.lower()
change(test_list)
not_change(test_str)
print(test_list) # 改变了原来的值
print(test_str) # 没有变
当然了,如果不想改变原来列表的值,参数可以传入列变的拷贝。alsit[:]
有趣的例子
再看一个有趣的例子,我们知道list是可以使用+添加一个列表的。
a1 = [1, 2, 3]
a2 = a1
print(id(a1), id(a2))
# 实际上是a2指向了新的对象,id已经改变。
# 所以现在a2、a1并不是同一对象的两个引用了,a2变化a1不会改变
a2 = a2 + [4] # 这个等式中,右边的a2还是和a1的id一样的,一旦赋值成功,a2就指向新的对象
print(id(1), id(a2)) # 不等,a2的id变化了
print(a1) # [1, 2, 3]没有变
如果是这样写
a1 = [1, 2, 3]
a2 = a1
print(id(a1), id(a2))
a2 += [4] # 相当于调用了a2.extend([4]),原地改变并没有新的对象产生
print(id(1), id(a2)) # 相等,a2的id没有变化
print(a1)
不同的地方在于a2 += [4],这句相当于调用了a2.extend([4])相当于原地改变,并没有新的对象产生。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22