
大数据与教育的深度融合共破人才荒
当下,大数据日益成为推动各领域变革的强劲力量,大数据与教育的深度融合也已成必然趋势。20日,“WE+2017智绘互联校园新生态峰会”在南京举行,来自全国800多所高校的领导、业界专家与互联网、IT精英热议大数据的广阔前景,校企数据化程度不高、数据流通不畅、大数据人才匮乏等成为各方关注的焦点。
教啥学啥问计于“数”
“数据驱动学校、分析变革教育”,将改变现有教与学的生态,成为未来教育的发展趋势。“运用大数据智能分析可助力破解择校‘感性化’难题。”教育大数据应用技术国家工程实验室负责人、华中师范大学校长杨宗凯举例说,美国教育科学院推出“高校导航”项目,汇集7000多所高校各类资源指标,进行大数据分析并对所有大学进行排序和筛选。美国加州马鞍山学院开发的教育个性化服务建议助理系统,根据学生喜好为他们推荐课程、时段和可选节次,并通过智能分析为课程设计者提供反馈,使他们能有的放矢改进教材。
未来所有老师的教学过程、学生的学习过程都将“线上化”,学生适合什么课程,需要什么指导,都需要精细计算。“农业社会的教育形态是个性化,师父带徒弟,名师出高徒;到了工业社会,组织形式和知识传播形态的变化,促使规模化、标准化成为教育新形态。”教育部科技发展中心主任李志民分析认为,“互联网+”浪潮下的教育,可以兼容大规模、灵活性、个性化,有助于真正实现教育公平。
数据宝藏静静沉睡
分析数据先要整理数据,但数据化程度不高、流通不畅是校企双方共同的困惑。阿里教育事业部总经理王晓斐认为,教育行业数据庞杂,各类数据库只是“静静躺在那儿”,并没有真正转化成数据生产力。同时,很多企业重视大数据中心建设、数据驱动,但中国商业联合会数据分析专业委员会一项调查显示,我国企业的数据化程度高级水平仅为14%。
提高产业效率,大数据是方向。农场选择蔬菜品种,取决于气象和市场,而不是“拍脑袋”决定;保险公司推销险种,要分析电话数据;电力公司也需分析用户用电数据。王晓斐介绍,在美国,上市公司市值排名靠前的公司都是以数据驱动的,比如苹果公司等;在中国,阿里巴巴、腾讯等企业正逐渐取代工商银行、中石油、中石化的龙头地位。“未来的中小型企业,一定都是线上型企业,生产、制造、销售、服务和售后等所有流程数据都沉淀在云端,为智能制造提供可能。”
校企共破人才荒
大数据炙手可热,但对于大数据人才的培养,目前在国内还属于探索阶段。知途教育首席执行官俞京华的一份调查显示,南京每天都有1500人的大数据相关岗位需求量,且不断增长。去年7月发布的国内首份大数据人才报告显示,目前全国的大数据人才仅46万,未来3-5年内大数据人才的缺口将高达150万。
站在互联网“风口”,大数据直接催热大数据专业。在教育部公布的2017年高校新增专业名单中,第二批32所高校成功获批开设“数据科学与大数据技术”本科专业。第一批成功申请该专业的高校仅有北京大学等3所高校。这意味着,目前国内具备培养大数据人才的院校或培训单位非常少,尚处于起步阶段。
星环信息科技有限公司技术总监杨洪山介绍,目前国内高校的培养多集中在统计学和计算机方面。而大数据需要的是复合型人才,对数学、统计学、机器学习和自然语言处理等多方面知识综合掌握;同时,大数据思维属于创新思维,从数据挖掘、发现、应用到商业决策,对知识结构和能力结构有很高要求。目前该公司正与复旦大学、同济大学、上海交大等合作研发课程。
“大数据专业实践所需的数据,包括交通、金融、医疗、物流等数十个领域行业,而高校并没有相关数据,教材、课程、师资几乎都是空白。企业和高校联手培养大数据人才将是必然趋势。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28