大数据时代说来就来 数据垃圾变黄金
大数据时代是指以大数据为驱动,影响生产率增长和消费者盈余模式的一个新的时代。大数据是高容量,高速度和高品质的信息资产,需要新的处理形式,其难以采用常规工具进行采集和处理,大数据时代里,常利用软件工具对海量数据进行挖掘和运用,借此帮助进行决策、洞察发现和流程优化。
大数据时代的迟到
一般来讲,大数据的概念提出可以追溯到上世纪90年代,大数据一词在当时就已经开始流行。而知名的咨询公司麦肯锡在2011年提出“数据,已经渗透到当今每一个行业和业务职能领域,成为重要的生产因素”正式代表着大数据时代的开启。关注大数据观察网(微信公众号:shuju_net)了解更多精彩资讯
从90年代的提出到现如今大数据时代的开启,大数据时代几乎迟到了20年。大数据的迟到主因是其数据集非常大且复杂,传统的数据处理方式和应用软件并不足以解决大数据问题,包括采集、存储、分析、数据策划、搜索、共享、传输、可视化查询、更新以及信息隐私等多方面都是难以攻克的难题。
数据存储方式的变革
事实上,自上世纪80年代开始,世界人均存储信息量约40个月翻一倍;可是大数据时代,这一趋势开始加速。2008年全球产生的数据量为0.49ZB(1ZB=10243TB),到2011年,这一数字变为了1.82ZB。数据量的爆炸来源于大量廉价的信息传感移动设备通过网络进行收集,而传统的处理大量数据的抽样调查法局限性变得越来严重。
云时代的开启给了大数据的发展提供了机会,也促进了大数据时代的降临。云计算和分布式存储为大数据提供了数据处理和数据存储的能力。可以说,没有云时代就不会有大数据时代的出现。
大数据时代的特点
大数据时代基于大数据而开启,而大数据的特点毫无疑问是大。可是大却并不是新数据生态系统最相关的特征,而是通过对数据集的分析获取新的相关性。
在2001年的研究报告中,META集团(现在的Gartner)将数据增长所遇到的挑战和机会定义为三维,即Volume数据增量,Velocity数据输入和Variety输出速度以及数据类型和来源范围,使用“3Vs”模型来描述大数据的方法一直延续至今。
大数据并不只有大
2012年,Gartner更新了其对大数据的定义:“大数据是高容量,高速度即高品质的信息资产,借助新的处理形式,以帮助客户加强决策,洞察发现和流程优化。”3Vs模型也在不同行业得到了不同修正,如IBM就提出,大数据具备的5V特点分别为Volume(大量)、Velocity(高速)、Variety(多样)、Value(低价值密度)和Veracity(真实性)。
大数据的固有特性在于其拒绝了传统的随机分析法(抽样调查),而是选择了将所有的数据都进行分析和处理,观察并跟踪数据的变化,最大程度上减少了数据误差,帮助用户的每一个决断都有据可依。大数据生成和存储的数据量的大小决定了其价值和潜在的洞察力,太小则可能不会被视为大数据。
大数据的核心在分析
速度方面,数据的生成和处理速度是为了满足增长和发展之路中的需求和挑战,如今的大数据通常可以实时获取。种类方面,数据的类型包括了文字,图像,音频,视频等多种数据通过数据融合可以帮助用户有效地利用其所产生的洞察力;低价值密度意味着大数据的变化性突出,数据集的不一致可能导致处理和管理数据阻碍进程;同时由于质量差异很大容易影响分析的准确性。
目前通常会利用机器学习对大数据进行分析,而这种简单的检测模式并不会告诉你数据有什么,却可以帮助用户发现藏在数据里的秘密。大数据通常只是一堆数字互动后而产生的副产品,可是他却是真实的,剥离后大数据的价值就可以显现。
大的数据时代的行业影响
大数据的时代的影响是全方面的,在市场中的应用已经不再局限于传统领域,而是全面开始影响三百六十行。
政府方面,运用大数据可以很好的控制采购成本,使生产力和创新效率得到提高。但是这也存在着一个明显的限制,数据分析通常需要中央和地方多个部门进行合作,从而才可以完善数据,创造新的效率提升方式。此外,在就业,经济生产力,犯罪,安全以及自然灾害和资源管理等方面大数据也可以起到他的作用。
制造业是最适合大数据的行业之一
制造业方面,大数据为制造业的透明度提供了基础设施,能够很好的解决组件性能和可用性不一致等问题。而且,预测制造的概念正在兴起,不同类型的感测数据可以借助声音,振动,压力,电流,电压和控制器数据等进行数据采集,大量的感官数据构成了制造业的大数据,生成的大数据作为预测及预防等方面的工具对行业的预判有着良好的帮助。
医疗方面,大数据分析可以提供个性化医疗和规范分析,临床风险干预和预测分析,使得护理变异性降低,患者数据自动化提供内外部报告,可以提供标准化医疗和患者登记册散点解决方案,帮助医疗改善。而且,随着可穿戴技术的发展,医疗数据量还将进一步提高,包括电子健康记录数据,成像数据,患者生成的数据,传感器数据和其他形式的数据都会让大数据在医疗领域的地位提升。
万物互联产生大量数据
除了这些传统领域,大数据还促进了新行业的发展,比如物联网。大数据于物联网协同工作,从物联网设备中获取数据提供设备互联性的映射,借助大数据技术进行分析,然后再将分析结果提供给医疗、制造等多个领域,帮助提高相关行业的工作效率。
目前,全球有着46亿手机用户,接入互联网的用户有10到20亿。这些用户每天所产生的数据量是巨大的,如果废弃,那就是数据垃圾,而如果收集并且用于种种行业之中,那么这就是大数据时代。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-25在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-24以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《刘静:10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda ...
2025-04-23大咖简介: 刘凯,CDA大咖汇特邀讲师,DAMA中国分会理事,香港金管局特聘数据管理专家,拥有丰富的行业经验。本文将从数据要素 ...
2025-04-22CDA持证人简介 刘伟,美国 NAU 大学计算机信息技术硕士, CDA数据分析师三级持证人,现任职于江苏宝应农商银行数据治理岗。 学 ...
2025-04-21持证人简介:贺渲雯 ,CDA 数据分析师一级持证人,互联网行业数据分析师 今天我将为大家带来一个关于用户私域用户质量数据分析 ...
2025-04-18一、CDA持证人介绍 在数字化浪潮席卷商业领域的当下,数据分析已成为企业发展的关键驱动力。为助力大家深入了解数据分析在电商行 ...
2025-04-17CDA持证人简介:居瑜 ,CDA一级持证人,国企财务经理,13年财务管理运营经验,在数据分析实践方面积累了丰富的行业经验。 一、 ...
2025-04-16持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03