
总结的几个Python函数方法设计原则
在任何编程语言中,函数的应用主要出于以下两种情况:
1.代码块重复,这时候必须考虑用到函数,降低程序的冗余度
2.代码块复杂,这时候可以考虑用到函数,增强程序的可读性
当流程足够繁杂时,就要考虑函数,及如何将函数组合在一起。在Python中做函数设计,主要考虑到函数大小、聚合性、耦合性三个方面,这三者应该归结于规划与设计的范畴。高内聚、低耦合则是任何语言函数设计的总体原则。
1.如何将任务分解成更有针对性的函数从而导致了聚合性
2.如何设计函数间的通信则又涉及到耦合性
3.如何设计函数的大小用以加强其聚合性及降低其耦合性
【聚合】
每个函数只做一件事
完美的程序设计,每个函数应该而且只需做一件事。
比如说:把大象放进冰箱分三步:把门打开、把大象放进去、把门关上。
这样就应该写三个函数而不是一个函数拿所有的事全做了。这样结构清晰,层次分明,也好理解!
【大小】
保持简单、保持简短
Python即是面向过程的语言,也是面向对象的语言,但更多的是充当脚本语言的角色。
同样的功能,使用Python来实现其代码长度也许是C/C++/Java等语言的1/3. 几百行代码就能实现不小的功能!
如果项目中设计的一个函数需要翻页才能看完的话,就要考虑将函数拆分了。
在Python自带的200多个模块中,很少看到某个函数有两、三页的。
Python代码以简单明了著称,一个过长或者有着深层嵌套的函数往往成为设计缺陷的征兆。
【耦合】
输入使用参数、输出使用return语句
这样做可以让函数独立于它外部的东西。参数和return语句就是隔离外部依赖的最好的办法。
慎用全局变量
第一重考虑: 全局变量通常是一种蹩脚的函数间的进行通信的方式。
它会引发依赖关系和计时的问题,从而会导致程序调试和修改的困难。
第二重考虑: 从代码及性能优化来考虑,本地变量远比全局变量快。
根据Python对变量的搜索的先后顺序: 本地函数变量==》上层函数变量==》全局变量==》内置变量
从上面可以看出,本地变量优先被搜索,一旦找到,就此停下。下面专门对其做了测试,测试结果如下:
import profile
A = 5
def param_test():
B = 5
res = 0
for i in range(100000000):
res = B + i
return res
if __name__=='__main__':
profile.run('param_test()')
>>> ===================================== RESTART =====================================
>>>
5 function calls in 37.012 seconds #全局变量测试结果:37 秒
Ordered by: standard name
ncalls tottime percall cumtime percall filename:lineno(function)
1 19.586 19.586 19.586 19.586 :0(range)
1 1.358 1.358 1.358 1.358 :0(setprofile)
1 0.004 0.004 35.448 35.448:1()
1 15.857 15.857 35.443 35.443 Learn.py:5(param_test)
1 0.206 0.206 37.012 37.012 profile:0(param_test())
0 0.000 0.000 profile:0(profiler)
>>> ===================================== RESTART =====================================
>>>
5 function calls in 11.504 seconds #局部变量测试结果: 11 秒
Ordered by: standard name
ncalls tottime percall cumtime percall filename:lineno(function)
1 3.135 3.135 3.135 3.135 :0(range)
1 0.006 0.006 0.006 0.006 :0(setprofile)
1 0.000 0.000 11.497 11.497:1()
1 8.362 8.362 11.497 11.497 Learn.py:5(param_test)
1 0.000 0.000 11.504 11.504 profile:0(param_test())
0 0.000 0.000 profile:0(profiler)
避免改变可变类型参数
Python数据类型比如说列表、字典属于可变对象。在作为参数传递给函数时,有时会像全局变量一样被修改。
这样做的坏处是:增强了函数之间的耦合性,从而导致函数过于特殊和不友好。维护起来也困难。
这个时候就要考虑使用切片S[:]和copy模块中的copy()函数和deepcopy()函数来做个拷贝,避免修改可变对象
避免直接改变另一个模块中的变量
比如说在b.py文件中导入a模块,a中有变量PI = 3.14, 但b.py想将其修改为:PI = 3.14159, 在这里你就搞不清楚变量PI原先的值到底是多少。碰到这种情况,可以考虑用易懂的函数名来实现:
#模块a.py
PI = 3.14
def setPi(new):
PI = new
return PI
这样既有自己想要的PI的值,又没有改变a模块中PI的值
import a
PI = a.setPi(3.14159)
print PI;a.PI
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师:数字化时代的关键人才 在当今数字化浪潮席卷全球的时代,数据已然成为驱动企业发展、推动行业变革的核心要素。 ...
2025-06-13CDA 数据分析师证书含金量几何?一文为你讲清楚 在当今数字化时代,数据成为了企业决策和发展的重要依据。数据分析师这一职业 ...
2025-06-13CDA 数据分析师报考条件全解析 在大数据和人工智能时代,数据分析师成为了众多行业追捧的热门职业。CDA(Certified Data Analyst ...
2025-06-13“纲举目张,执本末从。”若想在数据分析领域有所收获,一套合适的学习教材至关重要。一套优质且契合需求的学习教材无疑是那关键 ...
2025-06-092025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30