京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据分析,“快”比“大”更重要
现在人人都在讲大数据,似乎不说说大数据,就与这个时代有差距。大数据,真的有价值么?Linkedin资深总监Simon,为您从另外一个角度来分享对大数据的认识:
1、大数据除了占用空间、耗费资源外,本身没有太大价值。
2、我们需要把大数据做成小数据,数据分析才更有商业价值。
3、数据分析“快”比“大”更重要。
其中数据分析主要分为5个步骤:
第一步以前发生了什么?第二步明白历史上为什么会发生这件事。
第三步目前当下正在发生的什么事。
第四步未来预测将要发生什么事情。
第五步就是改变未来。
以下是Simon在西湖品学大数据峰会上的演讲:
大家好,很高兴见到大家,在今天的一个特殊场合,我非常感谢阿里巴巴品觉能邀请我来,跟那么多资深的专业人士见面,我在Linkedin待了四年,谈不上分享,只是一些跟大家交流一下自己的思想。
我觉得大数据本身没有任何意义,数据对我们来说就是存在电脑的硬盘里面,数据越大占用的硬盘越多成本越高耗电量越狠。
数据分析的5个步骤
要让大数据有意义,就要把大数据做成小数据,就数据分析。
我们可以分成五个步骤:第一步是必须要理解历史上发生过什么事?第二步明白历史上为什么会发生这件事,第三步目前当下正在发生的什么事,第四步未来预测将要发生什么事情,第五步就是改变未来。
在数据分析上,能够做到第四步的预测就已经非常厉害了。不过,在实际商业价值的产出来说,第一步到第四步基本的商业价值是零。假如我预测Simon今天早上会吃饭,明天早上坐飞机回美国,这个根本没有问题,因为Simon今天晚上肯定会吃饭,美国肯定要回,没有任何价值。我们需要的是要把未来变得更好,这才是分析本身产生价值最重要的一环。
在上图中,我们还容易发现,从第一到第五步之间复杂程度显著增加了。一个好的分析师能改变未来,而一般的分析师能改变现在,差一点的分析师连过去都不知道。
数据分析,快比大更重要
实际上数据在过去的几年增长了不同的阶段,以Linkedin相关的数据为例:第一步就是交易数据,以往大家都用兆字节来展示;第二步是CRM,在美国企业里面讲营销、销售,一个人到底是谁,他在哪里住,大约月收入多少钱,在什么公司,这些数据我们叫GB来衡量;再下一步就是网络数据,电子商务的网站,淘宝或者阿里是完全不同的级了,普通的互联网公司,数量级是TB来衡量;第四步就是社交网络数据,推特、脸谱为首的这些社交网络数据,他们产生的数据更大了。
很多人都讲大数据真大,越大越有价值,但真如此吗?大数据背后,大就是慢,就是复杂,就是成本提高,就是没有效率。中国的孙子兵法讲到兵在精不在多,数据再大,没有意义也是完全没有价值的,所以我们要把大数据做成小数据。
在商业数据分析中,我们要强调速度。为什么要讲速度呢?刚才品觉已经跟大家分享了,在数据本身我们讲3V本来说就是速度的体现,我讲的速度不是数据存储的速度,而是商业需求的速度。商业需求速度,在今天互联网出现以后,变成了100亿倍的增长。以前的话比如说像姜子牙做决策的话可能得思考一年,姜子牙思考了70年最后遇到了周文王,现在不一样,现在每个人需要作出非常非常迅速的决策,非常多的决策,每个人都需要决策,这就要求我们在速度上要跟上商业的发展。所以说,兵法里面也讲了一句话,兵贵胜不贵久,就是越慢越没有价值,越快越有价值。CDA数据分析师官网
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06