京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据在工业、医学、AI等领域发挥着无比重要的作用
“在上世纪六七十年代甚至八十年代,我国大量企业的数据是手写生成的,并存在文件柜里面。随着工业现场的出现,我们可以及时的收集到各种数据。工业开放出来以后,我们有了生产自动化的协议,有共同的数据结构、传感器。”正如中国工程院院士邬贺铨所言,大数据正在从概念一步步走向实践。
相对于消费领域的大数据,工业制造领域大数据产生的价值更需要重视。数据统计显示,把工业、产业领域的大数据利用率和人均产出率进行对比研究发现,财富100强的企业,有效利用了大数据的企业人均产出提升了14.4%,对制造业的贡献平均提升了20%,可见大数据对整个制造业的转型升级改造有非常大的作用。
邬贺铨强调,工业制造业的大数据特点包括:不同工业的数据多样性、异构性的差异;为了监控和预警,工业大数据需要实时分析和应用;理解工业数据需要有一定经验。工业大数据有必要在研发、设计、制造、售后等全环节实现应用,这样才能提升生产效率,改进产品质量,节约能源和资源的消耗。
大数据让医学和AI走向新阶段
在谈到大数据对医学的贡献,中国科学院院士陈润生表示,精准医学的本质就是组学大数据与医学的结合。近代生物医学革命性的变化就是得到了以遗传密码为基础的大数据,任何人可以得到自己的遗传密码。
上个世纪90年代开始,人类破解了自己的遗传密码,但需要耗资100亿美元。如今,破解一个人遗传密码的效率提高了10的6次方倍,而价格降低了100万倍。同同时,大数据技术也是破解遗传密码真正涵义的关键,毕竟目前医学领域的基因组的信息才被利用了3%,剩余的97%都没有被挖掘。所以大数据在医疗领域存在巨大潜力,只是目前实现精准医学还面临着诸多挑战。
而对于大数据与AI的关系,英国帝国理工学院计算机系教授郭毅可认为,二者常被比喻成哺育天才的奶粉和拥有无限潜力的婴儿。今天的AI实际上是大数据发展的一个部分,没有大数据,AI也就无法演进。目前AI的发展在于对大数据的深度学习,这一发展已经走向实用阶段,我们已经到了新的智能文明的前夜。
综上所述,大数据在工业制造、精准医学、AI等领域都发挥着无比重要的作用,但是分析大数据和处理大数据并不简单。“过去处理大数据更多是讲究数据的整体和大体呈现的规律。现在更多的考虑智能决策,因此传统的分析数据的基本方法论已经不适用了。”中国科学院院士徐宗本这样形容大数据分析面临的挑战。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22