
Python基础教程之正则表达式基本语法以及re模块
什么是正则:
正则表达式是可以匹配文本片段的模式。
正则表达式'Python'可以匹配'python'
正则是个很牛逼的东西,python中当然也不会缺少。
所以今天的Python就跟大家一起讨论一下python中的re模块。
re模块包含对正则表达式的支持。
通配符
.表示匹配任何字符:
‘.ython'可以匹配'python'和'fython'
对特殊字符进行转义:
‘python\.org'匹配‘python.org'
字符集
‘[pj]ython'能够匹配'python'和'jython'
反转字符集
‘[^abc]'可以匹配除了abc之外的任何字符
选择符
使用管道符号|
可选项
加上问好就变为了可选项:
r'(http://)?(www.)?python.org‘只能匹配下面几种:
'http://www.python.org'
'http://python.org'
'www.python.org'
'python.org'
重复子模式
*:允许模式重复0次或多次
+:允许模式重复1次或多次
{m, n}允许模式重复m-n次
当然,正则语法规则很多,远不止上面的这些。但是我们只能点到为止了,因为这篇博客的目的是介绍Python中的模块,re模块。
re 模块使 Python 语言拥有全部的正则表达式功能。
compile 函数根据一个模式字符串和可选的标志参数生成一个正则表达式对象。该对象拥有一系列方法用于正则表达式匹配和替换。
re 模块也提供了与这些方法功能完全一致的函数,这些函数使用一个模式字符串做为它们的第一个参数。
re中重要的函数:
compile(pattern[, flags]) 根据包含正则表达式的字符串创建模式对象
search(pattern, string[, flags]) 在字符串中寻找模式
match(pattern, string[, flags]) 在字符串的开始处匹配模式
split(pattern, string[, maxsplit=0]) 根据匹配项分割字符串
findall(pattern, string) 列出字符串中模式的所有匹配项
sub(pat, rep, string[, count=0]) 字符串中所有pat的匹配项用repl替换
escape(string) 将字符串中所有特殊表达式字符转义
下面就进行简单的应用:
使用match
?
1
2
3
import re
print(re.match('www', 'www.runoob.com').span()) # 在起始位置匹配
print(re.match('com', 'www.runoob.com')) # 不在起始位置匹配
使用search
?
1
2
3
import re
print(re.search('www', 'www.runoob.com').span()) # 在起始位置匹配
print(re.search('com', 'www.runoob.com').span()) # 不在起始位置匹配
这时候需要停一下,match和search的区别呢?
看看结果先:
match例子中结果:
(0, 3)
None
search例子中结果:
(0, 3)
(11, 14)
match()函数只检测RE是不是在string的开始位置匹配,search()会扫描整个string查找匹配;
也就是说match()只有在0位置匹配成功的话才有返回,如果不是开始位置匹配成功的话,match()就返回none。
search()会扫描整个字符串并返回第一个成功的匹配。
使用sub
Python 的re模块提供了re.sub用于替换字符串中的匹配项。
?
1
2
3
4
5
6
7
8
9
#!/usr/bin/python
import re
phone = "2004-959-559 # This is Phone Number"
# Delete Python-style comments
num = re.sub(r'#.*$', "", phone)
print "Phone Num : ", num
# Remove anything other than digits
num = re.sub(r'\D', "", phone)
print "Phone Num : ", num
结果:
Phone Num : 2004-959-559
Phone Num : 2004959559
最后献上菊花:
^ 匹配字符串的开头
$ 匹配字符串的末尾。
. 匹配任意字符,除了换行符,当re.DOTALL标记被指定时,则可以匹配包括换行符的任意字符。
[...] 用来表示一组字符,单独列出:[amk] 匹配 'a','m'或'k'
[^...] 不在[]中的字符:[^abc] 匹配除了a,b,c之外的字符。
re* 匹配0个或多个的表达式。
re+ 匹配1个或多个的表达式。
re? 匹配0个或1个由前面的正则表达式定义的片段,非贪婪方式
re{ n}
re{ n,} 精确匹配n个前面表达式。
re{ n, m} 匹配 n 到 m 次由前面的正则表达式定义的片段,贪婪方式
a| b 匹配a或b
(re) G匹配括号内的表达式,也表示一个组
(?imx) 正则表达式包含三种可选标志:i, m, 或 x 。只影响括号中的区域。
(?-imx) 正则表达式关闭 i, m, 或 x 可选标志。只影响括号中的区域。
(?: re) 类似 (...), 但是不表示一个组
(?imx: re) 在括号中使用i, m, 或 x 可选标志
(?-imx: re) 在括号中不使用i, m, 或 x 可选标志
(?#...) 注释.
(?= re) 前向肯定界定符。如果所含正则表达式,以 ... 表示,在当前位置成功匹配时成功,否则失败。但一旦所含表达式已经尝试,匹配引擎根本没有提高;模式的剩余部分还要尝试界定符的右边。
(?! re) 前向否定界定符。与肯定界定符相反;当所含表达式不能在字符串当前位置匹配时成功
(?> re) 匹配的独立模式,省去回溯。
\w 匹配字母数字
\W 匹配非字母数字
\s 匹配任意空白字符,等价于 [\t\n\r\f].
\S 匹配任意非空字符
\d 匹配任意数字,等价于 [0-9].
\D 匹配任意非数字
\A 匹配字符串开始
\Z 匹配字符串结束,如果是存在换行,只匹配到换行前的结束字符串。c
\z 匹配字符串结束
\G 匹配最后匹配完成的位置。
\b 匹配一个单词边界,也就是指单词和空格间的位置。例如, 'er\b' 可以匹配"never" 中的 'er',但不能匹配 "verb" 中的 'er'。
\B 匹配非单词边界。'er\B' 能匹配 "verb" 中的 'er',但不能匹配 "never" 中的 'er'。
\n, \t, 等. 匹配一个换行符。匹配一个制表符。等
\1...\9 匹配第n个分组的子表达式。
\10 匹配第n个分组的子表达式,如果它经匹配。否则指的是八进制字符码的表达式。
re的正则表达式语法
正则表达式语法表如下:
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15