京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据广泛应用的九大领域
随着国家与企业开始运用大数据,我们每时每刻都会看到大数据新的奇妙的应用,帮助人们真正从中获益。大多数企业和社会都会受到大数据分析的影响,但大数据是究竟是如何帮助增加价值呢?
下面让我们来看看九大领域大数据应用,这些都是大数据分析应用的关键领域:
一、理解、定位客户,以及为客户提供服务
这是最广为人知的大数据应用领域之一。重点是使用大数据来更好地了解客户以及他们的行为和喜好。企业热衷于收集社交媒体数据、浏览器日志、文本分析和传感器数据,来更贴切了解他们的客户。在大多数情况下,这里的总的目标是创建预测模型。例如可以通过使用大数据,使电信公司现在可以更好地预测客户流失,沃尔玛可以更好地预测哪些产品将会热卖,汽车保险公司能够了解其客户的驾驶水平,而政府则能够了解选民的偏好。
二、理解和优化业务流程
大数据也越来越多地用于优化业务流程。通过利用从社交媒体数据、网络搜索趋势以及天气预报挖掘出的预测信息,零售商能够优化其库存。其中广泛应用大数据分析的业务流程是供应链或配送路线优化。在这方面,地理定位或无线电频率识别传感器被用来追踪货物或送货车,并通过整合实时交通数据来优化路线。人力资源业务流程也能够通过使用大数据分析来改进。这包括优化人才招聘,以及使用大数据工具衡量公司文化和人员参与度。
三、 大数据改善每个人的生活
大数据不仅适用于企业和政府,也适用于我们每一个人。我们现在可以利用从可穿戴设备智能手表等科技产物生成的数据,这让我们可以追踪我们的热量消耗、睡眠模式等。我们还可以利用大数据分析来寻找爱情,大多数网上交友网站都使用大数据工具和算法来帮助我们寻找最合适的对象。
四、 提高医疗和研发
大数据分析的计算能力使我们能够在几分钟内解码整个DNA,并让我们可以找到新的治疗方法,同时更好地理解和预测疾病模式。就像所有人能够受益于智能手表和可穿戴设备产生的数据一样,大数据同样可以帮助病人更好地治病。未来的临床实验将不会仅限于小样本,而是将服务于每个人。大数据技术已经被用来监视早产婴儿以及患病婴儿。通过记录和分析每次心跳以及呼吸模式,医生现在可以在任何身体不适症状出现之前预测24小时的情况。这样,医生就可以更早地救助患病婴儿。
五、提高体育成绩
现在很多运动都已经开始采用大数据分析技术。例如用于网球鼻塞的IBM SlamTracker工具,我们使用视频分析来追踪足球或棒球比赛中每个球员的表现,而运动器材中的传感器技术(例如篮球或高尔夫俱乐部)让我们可以获得对比赛的数据以及如何改进。很多精英运动队还追踪比赛环境外运动员的活动-通过使用智能技术来追踪其营养状况以及睡眠,以及社交对话来监控其情感状况。
六、优化机器和设备性能
大数据分析还可以让机器和设备变得更加智能和自主化。例如,大数据工具被用来运行谷歌的自驾车。丰田的普锐斯配有相机、GPS以及强大的计算机和传感器,来在道路上安全驾驶,而不需要人类的干预。大数据工具还可以用来优化智能电网。我们甚至可以使用大数据工具来优化计算机和数据仓库的性能。
七、改善安全和执法
大数据被广泛应用于提高安全和执法过程。大家肯定都知道美国国家安全局(NSA)在使用大数据分析来对抗恐怖主义活动,甚至用来监控我们的生活。其他企业则使用大数据技术来检测和阻止网络攻击。警察还可以使用大数据工具来捉住罪犯,甚至预测犯罪活动,信用卡公司使用大数据来检测欺诈性交易。
八、改进和优化的城市和国家
大数据还被用来改善我们的城市和国家的很多方面。例如,它让城市可以基于实时交通信息、社交媒体和天气数据来优化交通情况。很多城市正在试点大数据分析技术,试图转变为智能城市,将交通基础设施和公共设施程序都加入进来
九、金融交易
大数据在金融行业的应用主要是在金融交易。高频交易(HFT)是大数据应用比较多的领域。其中,大数据算法被用来作出交易决定。现在,大多数股权交易都是通过大数据算法进行,这些算法越来越多地开始考虑社交媒体网络和新闻网站的信息来在几秒内做出买入和卖出的决定。
大数据时代到来,我们每个人,生活的各行各业都在直接或者间接享受这大数据技术带来的便捷,随着大数据技术日益发展和成熟,未来,必将带领我们进入一个数字化、智能化的新世界。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22