京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据将成为智能电网基础性技术 机遇与挑战并存
今天,大数据概念的讨论越来越少,大数据应用却如雨后春笋般涌出,这预示着大数据产业已经告别了概念炒作,进入了实实在在的落地阶段。在这一背景下,包括电力、金融、教育、医疗甚至农业等诸多行业正在大力拥抱大数据,如何拥有大数据思维,如何善用大数据分析,如何以大数据激发传统产业活力等问题成为关注重点。虽然大数据产业的发展刚刚起步,但是人们对于未来大数据应用的美好前景充满了期待。
当前,能源互联网正在全球范围内兴起,大数据技术加速在电力行业落地。在日前召开的“中国电力科学研究院大数据技术研讨会”上,业界各方就电力大数据技术展开了讨论,大数据在电力行业的应用前景得到了广泛认可。可以预见,随着大数据技术的日渐成熟和更多电力大数据应用的落地,大数据将成为电网的基础性技术,为构建更加智能、弹性、绿色、高效的电力互联网奠定基础。
电力拥抱大数据
“智能电网大数据是电力系统和相关领域数据的有机融合,是一系列对数据处理应用的理论、方法与技术,是一种对规律的全新认识论和价值萃取思想。”中国工程院院士、中国电科院院长郭剑波在会上提出了对智能电网大数据的认识,他表示,智能电网大数据的应用将实现割裂的数据资源向有效的数据资产转化,支撑更全面的分析、更准确的预测及更具价值的决策支持。
中国科学院周孝信院士指出,我国能源转型的目标是建设清洁低碳、安全高效、可持续发展的新一代能源系统。大数据及传感、信息、通信等技术的应用,将会对未来能源电力系统的系统形态、运行调度和市场交易模式产生重大影响。
对于大数据在智能电网中的应用,中国电科院副院长王继业表示,原有的基于物理模型的分析方法难以满足需求,数据驱动的方法将发挥重要作用。当前,电网智能化引发了内部数据的激增,智能电网各个环节产生了大量的高密度、高价值的多维多系统数据。因而,大数据未来将在智能电网中发挥重要作用。智能电网具有开放性、不确定性和普遍关联性,大数据能够以全量数据来反映整个电网系统的特征,提供全景和全过程的研究视角。在大数据技术的支撑下,智能电网将具备主动预测、主动配置、主动维修以及基于互联网的主动营销等能力。
王继业认为,大数据应用可以分为五个阶段。第一阶段是完成数据抽取与整合。这个阶段需要将不同的数据在数据源和时间片段上进行统一的整合与处理。第二阶段是统计分析,即从不同的时间、维度、颗粒度等方面进行规律的总结和业务解读,这是大数据应用的初级阶段,而完成了这两个阶段以后,就可以对大数据业务和问题进行解读。第三阶段是对大数据的深度分析,从数据出发,利用机器学习等技术挖掘数据潜在的关联特征,找寻业务规律。第四阶段是业务建模,把业务的模型转化为数据模型,最终转变为数学模型。第五阶段是数据模型的固化,即模型的系统化,将分析思路和业务系统进行对接,最终形成一套固化的大数据分析系统。
机遇与挑战并存
虽然大数据正在应用到越来越多的行业中,但是我们需要看到的是,今天的大数据技术还不够成熟,相关的应用仍处在探索阶段。中国信息通信研究院通信标准所副所长何宝宏在会上表示,大数据孤岛不容忽视,数据流通成为困扰业界的突出问题。在今天这个信息时代,数据已经成为资产,最终还要变成商品,而商品就意味着会流通。今天的商品流通规则实际上已经无法适应大数据的发展,因而需要建立针对大数据流通的新的制度和方法。
电力行业如何更好地引入大数据?对此,中国工程院院士薛禹胜提出了思考和建议。他表示,大数据和人工智能技术已经在一些行业得到了应用,然而对于电力行业而言,如何真正发挥大数据的价值还是值得探索的问题。大数据思维提倡的不仅仅是共享,还包括科学研究范式之间的协调。在以因果分析为主导的电力系统中,应用大数据可辅助传统的模型驱动方法。
国家电网信息通信部副主任魏晓菁认为,大数据不仅仅是技术,更是一种思维和方法,电力大数据需要将“用大数据说话、用大数据决策、用大数据管理、用大数据创新”的理念融合到行业实践中,充分利用大数据思想,在原有传统统计思想的基础上扩展因果关系、相关关系等分析思路,将大数据和生产实际、业务需求紧密结合起来,从而产生更大的价值。
“面对众多复杂和不确定的变化,互动与主动的需求,电网需要快速提升实时感知、高速通信和快速响应能力,建立一套智能化体系来应对冲击和挑战。”王继业认为,科学发展将有力带动大数据的发展和应用,机器学习、5G通信、无人驾驶、AlphaGo和下一代搜索等全球科技热点都是基于数据的感知、传递、计算、学习,都离不开大数据的支撑。大电网互联的稳定、新能源消纳和广泛接入,以及放开的市场交易机制和互动要求都将拉动电力行业对大数据技术应用的需求,推动共享利用、质量提升、融合统一、分析挖掘等电力大数据关键领域实现突破。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析师认证考试全面升级后,除了考试场次和报名时间,小伙伴们最关心的就是报名费了,报 ...
2025-12-23CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-23在Power BI数据可视化分析中,矩阵是多维度数据汇总的核心工具,而“动态计算平均值”则是矩阵分析的高频需求——无论是按类别计 ...
2025-12-23在SQL数据分析场景中,“日期转期间”是高频核心需求——无论是按日、周、月、季度还是年度统计数据,都需要将原始的日期/时间字 ...
2025-12-23在数据驱动决策的浪潮中,CDA(Certified Data Analyst)数据分析师的核心价值,早已超越“整理数据、输出报表”的基础层面,转 ...
2025-12-23在使用Excel数据透视表进行数据分析时,我们常需要在透视表旁添加备注列,用于标注数据背景、异常说明、业务解读等关键信息。但 ...
2025-12-22在MySQL数据库的性能优化体系中,索引是提升查询效率的“核心武器”——一个合理的索引能将百万级数据的查询耗时从秒级压缩至毫 ...
2025-12-22在数据量爆炸式增长的数字化时代,企业数据呈现“来源杂、格式多、价值不均”的特点,不少CDA(Certified Data Analyst)数据分 ...
2025-12-22在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15