
图形和数值的数据集描述方法
图形方法对数据集的描述
1. 条形图(bar graph)
条形图一般横向表示类别(class),纵向表示该类别所对应的类别频率(class frequency)。
2. 饼状图(pie graph)
饼状图是一个圆周,每个类别对应的扇形面积大小和类别相对频率(class relative frequency)成比例。
3. 帕累托直方图(pareto diagram)
帕累托直方图是讲直方图按照从高到低的顺序排列之后所形成的直方图。
以上三种图形表示方法是定性数据描述中常用的方法,在定量数据集描述中,还有以下的图表描述方法。
根据上表数据可以得到下图:
4.点图(dot plot)
每个观察值放在横轴上,当有重复的观察值时,则放在这个点上面,于是堆积成了此图。
5. 茎叶图(stem-and-leaf display)
将观测值百分比分为两部分,小数点左边的数字作为“茎”,小数点右边的数字作为“叶”。
6. 直方图
直方图是对横轴数值进行区间划分。
4-6是常用的定量数据集的图形描述方法,这三种方法各有所长,最大的优点可以看出数据主要集中在那个范围之内。
7. 箱线图(box plot)
箱线图一般用于异常值的检测,是基于四分位差(interquartile range,IQR)建立的。四分位差是指上四分位数(Qu)和下四分位数(Qi)之间的距离,即
箱线图中:
在内栏和外栏之间的观测值被认为是可疑异常值,在外栏之外的观测值则是高度可疑的异常值。
8. 散点图(scatterplot)
散点图用来描述两个定量变量之间的关系,称之为二元关系(bivariate relationship),当一个变量随另一个变量增长而增长时,这个二元关系是正相关的,反之,一个变量随另一个变量增长而呈减少趋势时,这个二元关系是负相关的。
9. 时间序列图(time series plot)
时间序列图用来描述度量值随着时间的推移而变化的数据变化情况。
均值(mean)
均值,也就是我们常说的平均数,小学生也知道,所有值得和除以这个数据集中 值的个数。
中位数(median)
简单的讲,就是将数据集中所有数据按照升序或者降序排序之后,处在中间的数值。(如果数值个数是偶数,那么是中间两个数的平均数)
众数(mode)
数据集中出现频率最高的数。
极差(range)
最大值与最小值的差值。
方差(variance)
样本方差:测量值与均值的偏差平方和除以(n-1),除以n-1是因为样本方差是总体方差的无偏估计量。
标准差(standard deviation)
相对位置的测度(measures of relative standing)
百分位排名(percentile ranking):对于有n个测量值的数据集(升序或者降序排列),第p个百分位点,有p%个测量值在它下面,而又(1-p%)个测量值在它上面。
z得分
z得分是利用均值和标准差来衡量测试值的相对位置,用测试值x减去均值,再除以标准差。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08CDA 数据分析师:解锁数据价值的专业力量 在当今这个数据爆炸的时代,数据已成为像石油一样珍贵的战略资源。而 CDA 数据分析师, ...
2025-08-08SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-08-07SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-08-07CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-07大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-08-07K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-08-07CDA 数据分析师考试全解析 在当今数字化时代,数据已成为企业发展的核心驱动力,数据分析师这一职业也愈发受到重视。CDA 数据分 ...
2025-08-07大数据时代的隐患:繁荣背后的隐忧 当我们在电商平台浏览商品时,系统总能 “精准” 推送心仪的物品;当我们刷短视频时,算法 ...
2025-08-07解析 F 边界检验:协整分析中的实用工具 在计量经济学的时间序列分析中,判断变量之间是否存在长期稳定的均衡关系(即协整关系) ...
2025-08-07