
图形和数值的数据集描述方法
图形方法对数据集的描述
1. 条形图(bar graph)
条形图一般横向表示类别(class),纵向表示该类别所对应的类别频率(class frequency)。
2. 饼状图(pie graph)
饼状图是一个圆周,每个类别对应的扇形面积大小和类别相对频率(class relative frequency)成比例。
3. 帕累托直方图(pareto diagram)
帕累托直方图是讲直方图按照从高到低的顺序排列之后所形成的直方图。
以上三种图形表示方法是定性数据描述中常用的方法,在定量数据集描述中,还有以下的图表描述方法。
根据上表数据可以得到下图:
4.点图(dot plot)
每个观察值放在横轴上,当有重复的观察值时,则放在这个点上面,于是堆积成了此图。
5. 茎叶图(stem-and-leaf display)
将观测值百分比分为两部分,小数点左边的数字作为“茎”,小数点右边的数字作为“叶”。
6. 直方图
直方图是对横轴数值进行区间划分。
4-6是常用的定量数据集的图形描述方法,这三种方法各有所长,最大的优点可以看出数据主要集中在那个范围之内。
7. 箱线图(box plot)
箱线图一般用于异常值的检测,是基于四分位差(interquartile range,IQR)建立的。四分位差是指上四分位数(Qu)和下四分位数(Qi)之间的距离,即
箱线图中:
在内栏和外栏之间的观测值被认为是可疑异常值,在外栏之外的观测值则是高度可疑的异常值。
8. 散点图(scatterplot)
散点图用来描述两个定量变量之间的关系,称之为二元关系(bivariate relationship),当一个变量随另一个变量增长而增长时,这个二元关系是正相关的,反之,一个变量随另一个变量增长而呈减少趋势时,这个二元关系是负相关的。
9. 时间序列图(time series plot)
时间序列图用来描述度量值随着时间的推移而变化的数据变化情况。
均值(mean)
均值,也就是我们常说的平均数,小学生也知道,所有值得和除以这个数据集中 值的个数。
中位数(median)
简单的讲,就是将数据集中所有数据按照升序或者降序排序之后,处在中间的数值。(如果数值个数是偶数,那么是中间两个数的平均数)
众数(mode)
数据集中出现频率最高的数。
极差(range)
最大值与最小值的差值。
方差(variance)
样本方差:测量值与均值的偏差平方和除以(n-1),除以n-1是因为样本方差是总体方差的无偏估计量。
标准差(standard deviation)
相对位置的测度(measures of relative standing)
百分位排名(percentile ranking):对于有n个测量值的数据集(升序或者降序排列),第p个百分位点,有p%个测量值在它下面,而又(1-p%)个测量值在它上面。
z得分
z得分是利用均值和标准差来衡量测试值的相对位置,用测试值x减去均值,再除以标准差。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23