京公网安备 11010802034615号
经营许可证编号:京B2-20210330
图形和数值的数据集描述方法
图形方法对数据集的描述
1. 条形图(bar graph)

条形图一般横向表示类别(class),纵向表示该类别所对应的类别频率(class frequency)。
2. 饼状图(pie graph)

饼状图是一个圆周,每个类别对应的扇形面积大小和类别相对频率(class relative frequency)成比例。
3. 帕累托直方图(pareto diagram)

帕累托直方图是讲直方图按照从高到低的顺序排列之后所形成的直方图。
以上三种图形表示方法是定性数据描述中常用的方法,在定量数据集描述中,还有以下的图表描述方法。
根据上表数据可以得到下图:
4.点图(dot plot)

每个观察值放在横轴上,当有重复的观察值时,则放在这个点上面,于是堆积成了此图。
5. 茎叶图(stem-and-leaf display)

将观测值百分比分为两部分,小数点左边的数字作为“茎”,小数点右边的数字作为“叶”。
6. 直方图
直方图是对横轴数值进行区间划分。
4-6是常用的定量数据集的图形描述方法,这三种方法各有所长,最大的优点可以看出数据主要集中在那个范围之内。
7. 箱线图(box plot)

箱线图一般用于异常值的检测,是基于四分位差(interquartile range,IQR)建立的。四分位差是指上四分位数(Qu)和下四分位数(Qi)之间的距离,即
箱线图中:
在内栏和外栏之间的观测值被认为是可疑异常值,在外栏之外的观测值则是高度可疑的异常值。
8. 散点图(scatterplot)

散点图用来描述两个定量变量之间的关系,称之为二元关系(bivariate relationship),当一个变量随另一个变量增长而增长时,这个二元关系是正相关的,反之,一个变量随另一个变量增长而呈减少趋势时,这个二元关系是负相关的。
9. 时间序列图(time series plot)

时间序列图用来描述度量值随着时间的推移而变化的数据变化情况。
均值(mean)
均值,也就是我们常说的平均数,小学生也知道,所有值得和除以这个数据集中 值的个数。
中位数(median)
简单的讲,就是将数据集中所有数据按照升序或者降序排序之后,处在中间的数值。(如果数值个数是偶数,那么是中间两个数的平均数)
众数(mode)
数据集中出现频率最高的数。
极差(range)
最大值与最小值的差值。
方差(variance)
样本方差:测量值与均值的偏差平方和除以(n-1),除以n-1是因为样本方差是总体方差的无偏估计量。
标准差(standard deviation)
相对位置的测度(measures of relative standing)
百分位排名(percentile ranking):对于有n个测量值的数据集(升序或者降序排列),第p个百分位点,有p%个测量值在它下面,而又(1-p%)个测量值在它上面。
z得分
z得分是利用均值和标准差来衡量测试值的相对位置,用测试值x减去均值,再除以标准差。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06