
未来数据分析用户互动的三种方式
随着时间推移,将会创造出更多的数据并加以使用,大数据的应用范围将从单纯的工程和软件开发领域,逐渐扩大到其他领域,帮助我们简化流程、改善客户服务和计算风险。
2000年,彼得·莱曼(Peter Lyman)和哈尔·瓦里安(HalR. Varian)开展了一项史无前例的研究。用计算机存储术语来说,他们的目标是弄清楚全球每年产生多少原始数据。他们发现,在1999年,全球产生了大约1.5EB(相当于15亿GB)的非重复原始数据。
18年后的今天,我们正身处于数据爆炸的时代。现在,仅仅一天产生的数据量就可以轻松超过那个数字。据IBM表示,现在每天产生的数据量为25亿GB,而且这种增长趋势没有表现出放缓的迹象。
组织机构正在以越来越具有创造力的方式应对这股数据洪流。美国宇航局(NASA)最近宣布,依靠其庞大的“经验教训”(Lessons Learned)数据库来规划以后的项目和太空探索。这个数据库收集了以前发射任务的经验教训。
这种对此类“大”数据的依赖在其他很多行业里也有所体现。IBM分析了世界卫生组织的数据,以弄清楚当地气候和气温如何影响疟疾的传播;Mt. Hood Meadows滑雪度假村把追踪器嵌入缆车票,好帮助他们了解哪些缆车道和滑雪道在什么时段最受欢迎,以便减少排队等候时间。
这一切还不包括消费者和企业每天在不知不觉中使用的众多算法,比如Facebook上的社交媒体信息和众所周知又莫测高深的谷歌网页排名算法。
对数据的这些创新应用引发了一个疑问:大数据还有哪些发展前景?随着时间推移,将会创造出更多的数据并加以使用,大数据的应用范围将从单纯的工程和软件开发领域,逐渐扩大到其他领域,帮助我们简化流程、改善客户服务和计算风险。
以下是大数据可能在未来改善企业与客户互动的几种方式。
1.个性化
当顾客来买东西的时候,本地店主和杂货商记得顾客姓名,并向他们的家人问好,这样的事情在以前并不罕见。但现在,由于企业与客户的很多互动都发生在网上,零售顾客可能觉得那种人情味已经消失了。
考虑到竞争如此激烈,这种人情味的缺失会让企业很难吸引和留住顾客。在不可能创造面对面机会的情况下,个性化的靶向营销却为数字化人情关系的建立创造了条件。Netflix就是这方面的一个成功例子。该公司成功发挥了大数据的潜力,通过分析用户的观影习惯,向他们提供合理的观影推荐。
我们有很大可能看到大数据在个性化方面的更多应用。近年来,我们已经看到社交聆听工具(用于监查社交媒体上的相关对话)的应用日益增多,这类工具让企业可以在一定程度上衡量消费者行为,但仅仅知道他们的赞、踩和行为动机,还不足以让企业真正了解他们的顾客。
而大数据分析超越了这种局限,能够分析顾客的整个数字足迹,让企业完全洞察顾客的兴趣、活动和未来行为。现在,先进的大数据和文本分析使企业可以从非结构化数据中获取有价值的信息,弄清楚消费者喜欢什么,热衷什么,希望通过什么方式进行交流,即将参加什么活动,和谁在一起。
企业不仅能知道某人对体育运动感兴趣,还能知道他喜欢橄榄球,支持德克萨斯长角牛队,家里的儿子即将毕业。这有助于企业进行个性化的营销宣传,为长期、可持续的客户关系奠定基础,这比地毯式营销和人口统计定向营销更加有效得多。
2.身份验证
按照联合国贸易和发展会议的说法,从2013年到2018年,全球网上购物者的数量预计将增长五成。随着网购活动的日益增多,人们也越来越需要严格的身份验证。游戏、零售和饮食等行业纷纷在网上销售有年龄限制的产品,但其中很多企业并没有完善的身份验证流程。
LexisNexis Risk Solutions近期对200名电商高管的调查显示,超过61%的受访者采用的方式都是自行验证,通过勾选框或者输入生日日期来验证用户的年龄。
对很多行业来说,缺乏严格的身份验证是个实实在在的问题。年龄限制对游戏行业的影响尤其大。然而,要在易用性和高效的身份验证流程之间取得平衡却很难。可想而知,企业希望能让线上购买产品或注册服务的流程尽可能地简单高效。
这就是大数据的用武之地。虽然用户很容易创建虚假的电子邮件地址或账户,但几乎不可能伪造一个全面、活跃且互相关联的数字化存在。现在,很多顾客都拥有自己的网络生活,企业很可能会与顾客合作,从而充分利用这一点。大数据分析工具让企业能够评估一名顾客的数据质量与数量,确保数据的一致性、价值性和真实性。对大数据的这种应用能够帮助验证顾客的真实身份,又不用在易用性上作出让步。
3.欺诈预防
与零售和游戏行业一样,金融业也可以利用大数据分析工具来避免身份欺诈,同时令消费者的旅程变得更加轻松省心。一般来说,通过身份验证避免欺诈的流程非常耗时,像申请贷款或者建立银行账户时,就经常要求消费者提供水电费账单或者披露个人资料。
在这方面,大数据能够帮上忙。企业不再要求顾客自证身份,而是利用大数据分析工具,为消费者提供方便,同时避免欺诈。这些工具让银行等企业可以分析线上现成的个人数据,对照已知欺诈邮件清单进行审查。一切均在后台实时完成,这意味着不会干扰到客户体验。
随着大数据行业的发展,很可能将有更多的企业利用数字足迹的威力。由此产生的结果是,数据分析将在企业与消费者的更多互动中发挥作用。
工程和医疗领域的大数据创新层出不穷,企业利用这些工具来强化与客户的关系,似乎也就变得理所当然。只要这能带来更有价值的互动、更高效的消费者旅程和更高的品牌忠诚度,这就必定是一件好事。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15