京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代的艺术金融
在国内,一场发轫于互联网经济的大数据效应在持续发酵,在艺术金融领域也初现端倪。事实上,这样一场影响生活、工作与思维的大变革不仅在改变商业模式,而且也对公共卫生医疗等诸多方面产生实质性影响。从目前的种种迹象来看,艺术金融已经被这一效应所波及。
肇始于互联网金融,大数据的艺术金融1.0模式是各类艺术品电商平台的建设。与传统电商相比,目前艺术品电商还处于平台架构建设阶段,关注艺术品消费阶层与销售渠道的拓展,主攻中低端的艺术品投资收藏市场,甚至还没有达到小数据层面。据文化部发布的《2013中国艺术品市场年度报告》显示,截至2013年底,我国包括从事在线拍卖业务的拍卖公司的艺术品交易电商不低于2000家。但由于鉴定、仓储、物流、售后服务等一系列环节与机制的不完善,这一艺术品线上消费市场近年在增量之下并没有质的提升。另外,近期维权纠纷又将艺术品电商推到风口浪尖。艺术金融的电商平台布局恐怕要厘清与传统的艺术品一、二级市场的关系,实现差异化的商业模式。如果能进一步借助网络经济的特点,有关艺术品市场的大数据分析是相当值得期待的。
值得注意的是,今年春拍,国内研究机构也开始逐步着手研究大数据背后的艺术金融。由雅昌艺术市场监测中心(AMMA) 出品的《中国艺术品拍卖市场调查报告2014春》(以下简称《报告》)体现了这样一种征候。艺术金融的大数据研究主要体现在以下两个方面:在艺术金融的宏观经济、政策环境层面,除了过往的将艺术市场成交额增速与对经济反应敏感的狭义货币M1比对,研究艺术品二级市场与宏观经济联动关系之外,还进一步细化了几大投资增长极的研究,将艺术指数与房地产指数、股票指数计算、比较,研究艺术品资本属性的优劣势;在艺术金融的微观市场层面,通过计算反映风险收益比的标准离差率研究艺术品的风险收益比。
鉴于目前拍卖行业法律法规的限制(例如,对于信息保密的界定),也就不难理解目前国内机构的这些研究还处于初步阶段。例如,在微观市场研究层面,《报告》所研究的案例相对有限,仅从风险收益比的实际数据论证了经常见诸媒体的论点:中国艺术品市场的长期投资保值属性突出。
如果我们从更大范围的数据出发,可能会得出更多有关艺术金融的宏观环境与微观市场环境的更有意思的论点。从宏观上讲,艺术品金融的走势依托于经济大环境和其他投资领域的现时和长远趋势的状况。比如GDP的增长、消费物价指数的变化、宏观经济调控政策对非必需品消费的管控趋势等,另外,一些非可把控的意外性风险:如石油危机、金融危机等,这些是对大的艺术品金融气候的把握。诸如根据对股市、房地产等高回报率投资领域的发展态势的判断,可以预估艺术品投资市场资金结构的变化。
另外,目前艺术金融的数据主要来自二级市场,如果从二级市场进一步拓展到一级市场,将能更全面地反映整个艺术市场的生态环境。当然,这还需要行业监管、法律法规的到位。初步估计,还有待进一步展开分析艺术品市场微观环境的相关数据参数包括但不限于如下:一级市场方面,国内外画廊、操作模式偏重学术价值挖掘还是偏重商业炒作、潜在资金投放量、推广计划、代理艺术家的综合情况、平均培育艺术家所需的时间、年成交额排名状况、收藏家的综合情况等。二级市场方面,通过历年的单件、专场和整体成交额、成交率分析不同年龄、教育背景、地域性、行业背景的高端客户对不同板块的关注程度,以预测未来市场的走向趋势:市场买家群体的内在变化,潜在资金投放量中老钱、新钱的比例变化,收藏、投资趣味的变化,地域性的差异所体现出来的不同地域的喜好、特点,以及识别某些艺术家的作品是否存在违规炒作的现象等。
此外,研究和建立艺术品的传承、出处、著录等学术档案登记制度也将成为艺术金融大数据研究的重要方面。这样涵盖艺术研究——艺术市场微观环境——艺术市场宏观环境的大数据分析必将使得艺术金融模式从现有的发展路径中有所突破。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22