
大数据时代的艺术金融
在国内,一场发轫于互联网经济的大数据效应在持续发酵,在艺术金融领域也初现端倪。事实上,这样一场影响生活、工作与思维的大变革不仅在改变商业模式,而且也对公共卫生医疗等诸多方面产生实质性影响。从目前的种种迹象来看,艺术金融已经被这一效应所波及。
肇始于互联网金融,大数据的艺术金融1.0模式是各类艺术品电商平台的建设。与传统电商相比,目前艺术品电商还处于平台架构建设阶段,关注艺术品消费阶层与销售渠道的拓展,主攻中低端的艺术品投资收藏市场,甚至还没有达到小数据层面。据文化部发布的《2013中国艺术品市场年度报告》显示,截至2013年底,我国包括从事在线拍卖业务的拍卖公司的艺术品交易电商不低于2000家。但由于鉴定、仓储、物流、售后服务等一系列环节与机制的不完善,这一艺术品线上消费市场近年在增量之下并没有质的提升。另外,近期维权纠纷又将艺术品电商推到风口浪尖。艺术金融的电商平台布局恐怕要厘清与传统的艺术品一、二级市场的关系,实现差异化的商业模式。如果能进一步借助网络经济的特点,有关艺术品市场的大数据分析是相当值得期待的。
值得注意的是,今年春拍,国内研究机构也开始逐步着手研究大数据背后的艺术金融。由雅昌艺术市场监测中心(AMMA) 出品的《中国艺术品拍卖市场调查报告2014春》(以下简称《报告》)体现了这样一种征候。艺术金融的大数据研究主要体现在以下两个方面:在艺术金融的宏观经济、政策环境层面,除了过往的将艺术市场成交额增速与对经济反应敏感的狭义货币M1比对,研究艺术品二级市场与宏观经济联动关系之外,还进一步细化了几大投资增长极的研究,将艺术指数与房地产指数、股票指数计算、比较,研究艺术品资本属性的优劣势;在艺术金融的微观市场层面,通过计算反映风险收益比的标准离差率研究艺术品的风险收益比。
鉴于目前拍卖行业法律法规的限制(例如,对于信息保密的界定),也就不难理解目前国内机构的这些研究还处于初步阶段。例如,在微观市场研究层面,《报告》所研究的案例相对有限,仅从风险收益比的实际数据论证了经常见诸媒体的论点:中国艺术品市场的长期投资保值属性突出。
如果我们从更大范围的数据出发,可能会得出更多有关艺术金融的宏观环境与微观市场环境的更有意思的论点。从宏观上讲,艺术品金融的走势依托于经济大环境和其他投资领域的现时和长远趋势的状况。比如GDP的增长、消费物价指数的变化、宏观经济调控政策对非必需品消费的管控趋势等,另外,一些非可把控的意外性风险:如石油危机、金融危机等,这些是对大的艺术品金融气候的把握。诸如根据对股市、房地产等高回报率投资领域的发展态势的判断,可以预估艺术品投资市场资金结构的变化。
另外,目前艺术金融的数据主要来自二级市场,如果从二级市场进一步拓展到一级市场,将能更全面地反映整个艺术市场的生态环境。当然,这还需要行业监管、法律法规的到位。初步估计,还有待进一步展开分析艺术品市场微观环境的相关数据参数包括但不限于如下:一级市场方面,国内外画廊、操作模式偏重学术价值挖掘还是偏重商业炒作、潜在资金投放量、推广计划、代理艺术家的综合情况、平均培育艺术家所需的时间、年成交额排名状况、收藏家的综合情况等。二级市场方面,通过历年的单件、专场和整体成交额、成交率分析不同年龄、教育背景、地域性、行业背景的高端客户对不同板块的关注程度,以预测未来市场的走向趋势:市场买家群体的内在变化,潜在资金投放量中老钱、新钱的比例变化,收藏、投资趣味的变化,地域性的差异所体现出来的不同地域的喜好、特点,以及识别某些艺术家的作品是否存在违规炒作的现象等。
此外,研究和建立艺术品的传承、出处、著录等学术档案登记制度也将成为艺术金融大数据研究的重要方面。这样涵盖艺术研究——艺术市场微观环境——艺术市场宏观环境的大数据分析必将使得艺术金融模式从现有的发展路径中有所突破。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29