京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据库索引的作用和原理
数据库索引是为了增加查询速度而对表字段附加的一种标识。很多人机械的理解索引的概念,认为增加索引只有好处没有坏处。其实远不是那样的,这里将其介绍尽量详细些。
首先明白为什么索引会增加速度,DB在执行一条Sql语句的时候,默认的方式是根据搜索条件进行全表扫描,遇到匹配条件的就加入搜索结果集合。如果我们对某一字段增加索引,查询时就会先去索引列表中一次定位到特定值的行数,大大减少遍历匹配的行数,所以能明显增加查询的速度。那么在任何时候都应该加索引么?这里有几个反例:1、如果每次都需要取到所有表记录,无论如何都必须进行全表扫描了,那么是否加索引也没有意义了。2、对非唯一的字段,例如“性别”这种大量重复值的字段,增加索引也没有什么意义。3、对于记录比较少的表,增加索引不会带来速度的优化反而浪费了存储空间,因为索引是需要存储空间的,而且有个致命缺点是对于update/insert/delete的每次执行,字段的索引都必须重新计算更新。
那么在什么时候适合加上索引呢?我们看一个Mysql手册中举的例子,这里有一条sql语句:
SELECT c.companyID, c.companyName FROM Companies c, User u WHERE c.companyID = u.fk_companyID AND c.numEmployees >= 0 AND c.companyName LIKE '%i%' AND u.groupID IN (SELECT g.groupID FROM Groups g WHERE g.groupLabel = 'Executive')
这条语句涉及3个表的联接,并且包括了许多搜索条件比如大小比较,Like匹配等。在没有索引的情况下Mysql需要执行的扫描行数是77721876行。而我们通过在companyID和groupLabel两个字段上加上索引之后,扫描的行数只需要134行。在Mysql中可以通过Explain Select来查看扫描次数。可以看出来在这种联表和复杂搜索条件的情况下,索引带来的性能提升远比它所占据的磁盘空间要重要得多。
那么索引是如何实现的呢?大多数DB厂商实现索引都是基于一种数据结构——B树。因为B树的特点就是适合在磁盘等直接存储设备上组织动态查找表。B树的定义是这样的:一棵m(m>=3)阶的B树是满足下列条件的m叉树:
1、每个结点包括如下作用域(j, p0, k1, p1, k2, p2, ... ki, pi) 其中j是关键字个数,p是孩子指针
2、所有叶子结点在同一层上,层数等于树高h
3、每个非根结点包含的关键字个数满足[m/2-1]<=j<=m-1
4、若树非空,则根至少有1个关键字,若根非叶子,则至少有2棵子树,至多有m棵子树
看一个B树的例子,针对26个英文字母的B树可以这样构造:
可以看到在这棵B树搜索英文字母复杂度只为o(m),在数据量比较大的情况下,这样的结构可以大大增加查询速度。然而有另外一种数据结构查询的虚度比B树更快——散列表。Hash表的定义是这样的:设所有可能出现的关键字集合为u,实际发生存储的关键字记为k,而|k|比|u|小很多。散列方法是通过散列函数h将u映射到表T[0,m-1]的下标上,这样u中的关键字为变量,以h为函数运算结果即为相应结点的存储地址。从而达到可以在o(1)的时间内完成查找。
然而散列表有一个缺陷,那就是散列冲突,即两个关键字通过散列函数计算出了相同的结果。设m和n分别表示散列表的长度和填满的结点数,n/m为散列表的填装因子,因子越大,表示散列冲突的机会越大。
因为有这样的缺陷,所以数据库不会使用散列表来做为索引的默认实现,Mysql宣称会根据执行查询格式尝试将基于磁盘的B树索引转变为和合适的散列索引以追求进一步提高搜索速度。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06