
从大数据到人工智能 我们还有多远要走
从去年开始,从政府到企业,从分析机构到业界专家,几乎所有的企业和个人都将目光锁定到了人工智能上。如果说2016年是人工智能的新纪元,人们对于人工智能的探讨还是基于概念的探讨和前景的展望上,那么2017年则是人工智能如何落地的关键一年。
从广义上讲,人工智能的应用已经非常广泛,各大新闻客户端会根据你的阅读兴趣推送相关新闻、各大电商平台会根据你的购买习惯推送相关商品、几乎所有你浏览的网页所呈现的广告都与你的历史搜索相关……这些都可以称得上是人工智能。而且,与过去60年人工智能的发展主要集中在实验室里不同,新一轮的人工智能已经在诸多应用场景中发挥威力,应该说,新一轮的人工智能浪潮才刚刚开始。
从云计算到大数据,人工智能已经具备了相对坚实的基础。其中,大数据称得上是人工智能赖以开展的生产资料,而云计算则是人工智能发展的生产工具。不过,从当下人工智能的发展现状看,大部分的人工智能还停留在大数据分析阶段,距离真正的人工智能还有一定的距离。
人工智能正在告别新一轮概念炒作
如果说60年前人工智能概念的提出,多少有些科幻的成份,那么,今天人工智能概念的再次火热却带有强烈的现实意义。从谷歌AlphaGo在围棋领域战胜人类选手后,人工智能开启了新一轮的发展热潮。与以往人工智能凭借强大的算法(穷举)战胜人类不同,在围棋领域,人工智能展现出了机器学习的能力。
于是,2016年被业界称为人工智能的新纪元,几乎所有的IT互联网企业,以及那些还在推动互联网+、数字化转型的传统企业,也开始寻求借助人工智能实现自身的转型升级,以人工智能为代表的新技术正在成为新的生产力。
不过,在2016年,企业对于人工智能的关注依旧停留在概念层面,也就是说,企业很清楚人工智能领域可能蕴含的机会,以及人工智能的应用给传统产业可能带来的冲击。但如何推动人工智能的落地,将这些设想变成现实依旧是一个难题。
在这一过程中,企业发现,云计算、大数据这两大技术正在人工智能的发展过程中扮演越来越重要的角色。云计算提供计算能力,起到了生产工具的角色;大数据提供数据基础,起到了生产资料的角色。
从技术发展的逻辑讲,人工智能从云计算、大数据的角度切入,再合适不过;但从应用角度讲,如何通过云计算、大数据的应用,实现人工智能,仍旧还需要很长的路要走。应该说,人工智能与以往的技术概念炒作路线完全一致,也在经历从过度神化走向落地。
而从行业应用的角度讲,那些天生对计算能力和数据要求较高的行业正在开启人工智能应用的大门。正如高通全球副总裁、创投董事总经理沈劲所说,人工智能已经进入下半场,下半场意味着其发展速度会比我们想象地快的多,人工智能已经能够迅速变革各个行业。这缘于人工智能所拥有的三大推动力:数据、网络、计算能力,它们各自都在以指数级的速度发展。
而高盛首席经济学家Jan Hatzius也表示,未来人工智能技术将会全面驱动生产力的提高,如同电力对各行各业的影响,人工智能将会进入到农业、金融、医疗、零售、能源等诸多行业中,机会巨大。
从大数据到机器学习
人工智能发展渐入佳境
尽管人工智能的新时代已经开启,但目前人工智能的发展和运用,还主要集中在大数据技术层面:通过对海量数据的分析,得出相应的数据规律,从而指导人们根据数据分析结果进行决策的优化,释放数据价值。正如创新工场CEO李开复曾讲到的那样,人工智能最初被使用到的场景就是大数据积累得比较好的场景。
因此,很多从事大数据分析的企业开始给自己贴上人工智能的标签,严格来说,这样做不免有蹭热点的嫌疑,却也合乎逻辑。如果把新一轮的人工智能发展重新界定,大数据技术的深入应用可以算作是人工智能的1.0时代。
基于对数据的分析、洞察数据的秘密,这里的主体依然是人,而并非机器。但机器学习、深度学习的出现,则让主体逐渐变成了机器,开始体现人工智能的真正意义。从人对数据分析到机器通过数据来学习,这样一个变迁的意义可谓深远,称得上是人工智能的2.0时代。
但从目前人工智能的发展现状看,只有很少的企业能够进阶到以机器学习为代表的人工智能2.0阶段。与大数据分析相比,机器学习的出现,则是在大数据分析的基础上,对算法不断优化,让机器能够借助这些算法持续提升大数据分析的能力。这里的算法,就像是人类赋予机器的智慧和能力,从“授之以鱼”到“授之以渔”。
从技术角度看,云计算、大数据到机器学习,人工智能的发展尽管迅速,但依然处在线性发展阶段。真正高阶的人工智能,则是机器自身具备数据收集、整理、分析的能力,并自主对算法进行调整和优化,自主做出判断和决策。这样的人工智能才称得上是人工智能的3.0时代,也更接近人们理想中的人工智能。
而从应用角度看,李开复也给出了自己的判断:未来10~15年人工智能将按照以下三个阶段发展:首先,人工智能会在数据化程度高的行业发生;其次,随着感知、传感器和机器人的发展,人工智能会延展到实体世界;最终人工智能将穿透到个人场景。
人工智能下一个突破点:应用场景
不管是国际象棋,还是围棋或是德州扑克,人工智能在这类棋牌游戏中能否战胜人类,已经变得没有悬念。如果人工智能只能做到这些,这一新兴技术的魅力就会大打折扣。
事实也是如此,如今,人们对这类人机大战开始变得漠不关心,开始期望在几乎所有的工作和生活场景中应用这一新技术,就如同当年计算机、互联网出现之初一样。彼时,计算机的应用让人们进入无纸化的信息时代,而互联网的应用则让人们得以打破信息传输的边界,真正让世界变得更加互联互通。
从目前的态势看,人工智能所带来的革命性将远超计算机和互联网,因为它要做的是要代替,或者说部分代替人类的思考。比如,在医疗行业,医生的诊断能力很大程度上取决于这个医生个人的医疗水平、医疗经验。通过对病人各项指标的化验数据,那些经验丰富的医生可以做出更加准确的诊断,而那些年轻医生的准确性则要差很多。相比较而言,人工智能显然更具优势,因为它可以对所有相关病例数据进行分析,从而得出更加接近真相的诊断。
医疗显然是人工智能可以发光发亮的热门领域之一。人工智能类似的应用还可以推广到更多的场景中,比如金融、能源、交通,甚至是文艺创作等众多行业。人工智能给人们带来的,不仅是通过数据分析呈现其规律,帮助人们进行决策;而是规避人类被情绪、感情等因素的干扰,帮助人们做出更加合理的决策。
不过,相比较人工智能技术的演进,人工智能当下最重要的任务是如何普及到更多的应用场景中,并真正在这些场景中为人们所应用。人工智能需要不断获取新的数据、进行持续且深度的学习,“越用越灵”可以说是人工智能发展的关键。
而从目前市场应用的角度看,人工智能还只是在一些特殊的领域和特殊的地方试用而已,远远没有普及开来,也很难真正发挥其作用。从实验室到普及,人工智能显然还有一个相当长的路要走。
因此,现阶段人工智能的机会正更多集中在不同的应用场景上,而不只是实验室级别的应用。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28