
R语言字符串的处理(解析+案例)
数据分析师的日常工作就是数据预处理,数据预处理最经常遇到的问题就是字符串的处理,这部分很难,我以前看过一些R的书和一些技术博客,现在依旧发现有些细节做不好,下面我就转载别人的一些字符串处理的方法,我会在下面说说我的看法:
字符串分割函数:strsplit( )
字符串连接函数:paste( )
计算字符串长度:nchar( )
字符串截取函数:substr( )及substring( )
字符串替换函数:chartr( )
大小写转换函数:toupper( )、tolower( )及casefold( )
以目前的工作来说,前4个至少每次都可以用到其中的一两个,5和6不经常用。
1:strsplit( )函数用于字符串分割,其中split是分割参数。所得结果以默认以list形式展示。
用法:strsplit("字符串",sep=“”(分隔符,可省略sep=,直接写“”双引号里面的内容))
2:paste( )函数用于字符串连接,其中sep负责两组字符串间的连接;collapse负责一组字符串内部的连接。
用法:paste(..., sep = " ", collapse = NULL) (举例:A<-c(a,b),B<-c(1,2),paste(A,B,sep="_",collapse=":")结果为:A_1:B_2。
3:很好理解,用法+案例:nchar(“abc”)结果为3。n是char的长度计算。
4:substr( )函数和substring( )函数是截取字符串最常用的函数,两个函数功能方面是一样的,只是其中参数设置不同。
substr( )函数:必须设置参数start和stop,如果缺少将出错。用法:substr(“字符串”,start=数字,stop=数字)下同。
substring( )函数:可以只设置first参数,last参数若不设置,则默认为1000000L,通常是指字符串的最大长度。
这个也很少理解:substr("abcd",2,3)结果为bc;substring("abcd",2)结果为bcd。
注意:substr和substring的区别就是最后一个参数:前者是必须存在stop结尾,后者随意。
5:chartr( )函数:将原有字符串中特定字符替换成所需要的字符。
其中参数old表示原有字符串中内容;new表示替换后的字符内容
用法:chartr(old= ,new= ,数据框)
案列:x<-c(abc),chartr(old="b",new="s",x)结果就是asc。
6:toupper( )函数:将字符串统一转换为大写。
tolower( )函数:将字符串统一转换为小写。
casefold( )函数:根据参数转换大小写。
前面2个函数比较简单,说说第三个:casefold(向量,upper=T或FALSE),upper=T全是大写,反之。
写这个有2个好处,1是可以帮助别人,2是自我巩固,当然重点是2自我巩固。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08