
生命大数据将进入寻常百姓生活
人的一生,简单的讲,不外乎“生老病死”。我们能抗争的、个体差异最大的就是“病”了。几千年文化、知识、技术、经验的累积,人类对自身健康状况的了解以及疾病干预的能力都大大提高。然而,我们对自身健康的掌控能力离预期还远远不够,面对各类疾病缺少深入的了解、精细的分类和有针对性的治疗。
旨在正确的时间,给正确的人,使用正确的药物的“精准医疗”应运而生。获取和掌握组学、临床信息等生命大数据里包含的海量信息是医疗迈向精准的重要前提。生命大数据的累积和挖掘将逐步揭示健康与疾病的全景关联图。
生命大数据支撑精准医学研究
人类基因组计划(human genome project,HGP)、基因组单体型图计划(hapmapproject)、全基因组关联分析(genome-wide association study,GWAS)、DNA元件百科全书(encyclopedia of DNA elements,ENCODE)、表观路线图(NIH roadmap epigenomics)等大型组学计划的顺利完成,带动了生命科学领域的重大变革。
高通量测序、高性能质谱等组学技术得以快速发展,生命科学研究产生了大量有价值的包括基因组学、转录组学、蛋白质组学、代谢组学等在内的“生物大数据”。整合分析多重组学数据和临床资料,构建健康与疾病的知识网络,将有望对疾病发展和不同病理状态进行更加准确的分类,为不同遗传背景的患者提供个体化诊断及精准治疗。
很显然,科学家们都已经意识到各类生命大数据的重要作用。然而,以上重要的大型组学计划均由欧美国家发起,获得的数据主要基于欧美人群。中国人口众多,遗传背景与欧美人群有较大差异。实现中国人民的精准医疗,则需要中国人群的生命大数据来推动。
中科院在2015年启动重点部署项目“中国人群精准医学研究计划”,将在4年内完成4000名志愿者的DNA样本和多种表现型数据的采集,并对其中2000人进行深入的精准医学研究,包括全基因组序列分析,建立基因组健康档案,针对一些重要慢性病的遗传信号开展疾病风险和药物反应的预警和干预研究。这些数据将会成为非常宝贵的中国人群遗传信息资源。
科技部于2016年3月8日公布《关于发布国家重点研发计划精准医学研究等重点专项2016年度项目申报指南的通知》,拉开了精准医疗重大专项科研行动的序幕。本年度的科研专项包括构建百万人以上的自然人群国家大型健康队列和重大疾病专病队列,建立生物医学大数据共享平台等。
在国家战略需求层面,生命大数据研究正如火如荼的开展起来,为精准医学研究打下基础。这一系列大数据项目的开展,将建设一套符合我国国情的生命大数据的获取、分析、存储、使用等规范;多个与健康相关的中国人群生命大数据知识库;面向科研人员和医务工作者的友好共享数据平台等等。基于这些大数据挖掘生命动态规律,将是通向精准医疗的重要基石。
综合组学大数据和临床大数据挖掘生命规律
生命大数据包含的种类繁多,包括基因组、转录组、蛋白组、表观组、宏基因组等各类组学数据和影像、生化指标、标型特征等各类临床数据。我国各类组学数据主要产生于科研院所和高校,临床数据主要来源于各类医疗机构。
整合多类数据,挖掘深层机制无疑是行之有效的方法。过去的整合分析主要是限于各类组学数据内部,例如综合组蛋白修饰数据、转录组数据和染色质相互作用数据筛查全基因组范围内的顺式作用元件。当面对精准医疗,需要明确疾病的不同亚型及对应的分子机制,以及合适的治疗方案,大数据在整合分析、挖掘时则必须要加上临床大数据。
在2016年,多家科研机构和医疗机构联合起来,共同攻关生命大数据:
中科院北京基因组研究所联合中科院生物物理研究所、浙江大学、复旦大学、国家卫计委信息统计中心、北大人民医院、中南大学湘雅医院系统等构建精准医学大数据处理和利用的标准化技术体系。
军事医学科学院放射与辐射医学研究所联合多家机构构建精准医学大数据管理和共享技术平台。
少量生命大数据的研究成果已经进入普通百姓的视野
在媒体的大力宣传下,大数据和精准医疗的概念已出现在普通百姓的生活中。一些基于生命大数据的成果已经被用到普通消费者身上,最为常见的就是基因检测了。
通过对具有特定特征(如患某种疾病)的人群和对照人群进行遗传物质的对比和关联研究,可挖掘出一些与该特征相关的基因位点。一些商业公司将同类疾病的不同研究结果综合起来,评估消费者患某类疾病的风险。这被认为是一个很酷、有用、拥有巨大商业前景的行业,因此近一两年内成立了许多面向普通消费者的基因检测公司。
“十三五”期间的生命大数据
我国的精准医疗从今年开始落地实施,研究内容涉及到大规模人群队列研究和精准医学大数据研究。可以预见,在三到五年内,将会产生大量中国人群的各类生命大数据以及对应的知识注释。
一方面,这些大数据将有望打破欧美国家对生命大数据的垄断,形成世界范围内的新布局;同时,将有力推动我国生命科学研究和健康事业;此外,阶段性的成果也可能会被单独拿出来,直接走向面对普通消费者的商业模式中(就像基因检测一样)。
伴随着美好愿景的,也一定还有潜在问题:
1、我国还缺乏一个国家级的、被广大科研人员认可的数据存储、使用、共享平台;
2、大数据的安全与管理也是重中之重;
3、各类公司带着一些成果直接面向普通消费者,但缺乏统一、可用的行业标准,不当的基因解读有可能伤害一些消费者,造成普通百姓对大数据行业的误解。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15