
python绘图:matplotlib和pandas的应用
在进行数据分析时,绘图是必不可少的模式探索方式。用Python进行数据分析时,matplotlib和pandas是最常用到的两个库。
1、matplotlib库的应用
准备工作如下:打开ipython,输入命令分别导入numpy和matplotlib.pylab库。
[python] view plain copy
import numpy as np
import matplotlib.pylab as plt
1)创建fig
绘图第一步是创建绘图窗口fig。
[python] view plain copy
fig1 = plt.figure()
2)创建subplot
在窗口上添加AxesSubplot类型的子绘图区域,一个窗口可以添加多个子绘图区。
[python] view plain copy
ax1 = fig1.add_subplot(2,2,1)
ax4 = fig1.add_subplot(2,2,4)
3)subplot中绘图
调用子绘图区的方法,可以绘制点线图、频数图、散点图等常用图形。
注意:在同一个subplot中多次调用plot(),所得到的图形是相互覆盖的。
[python] view plain copy
ax1.plot(np.random.randn(50).cumsum(),'k--')
ax4.hist(np.random.randn(30))
4)各类参数设置
主要关注以下几种方法:set_xlims设置坐标轴的上下限、set_ticks设置坐标刻度、set_ticklabel设置坐标标注。
[python] view plain copy
ax1.set_xlim(-10,60)
ax1.set_xticks([0,20,40,60])
ax1.set_xticklabels(['a','b','c','d'])
5)清除和保存图形
用subplot的clear()方法可以清除现有的图形,用figure的savefig()保存图形到指定路径。
[python] view plain copy
ax1.clear()
#windows下的路径
fig1.savefig(‘.\\test.jpg’)
2、pandas库的应用
相比于利用matplotlib库绘图,采用pandas绘图要便捷得多。参照前一部分,同样需要导入pandas、numpy库。
[python] view plain copy
import pandas as pd
from pandas import Series,DataFrame
import numpy as np
1)plot方法及参数
对于Series和DataFrame类型的数据,可以直接调用两种类型对应的plot方法,绘图时自动采用索引值绘制横坐标,采用每一列数据绘制纵坐标。这里分别以两类数据为例。
[python] view plain copy
se1 = Series(np.random.randn(30).cumsum())
df = DataFrame({'a':np.random.randn(30),'b':np.random.randn(30)})
参数设置很方便,在plot()方法参数列表中添加相应参数值即可。常用的有:类型kind可设置为line(线图)、bar(垂直柱状图)、barh(水平柱状图)、kde(核密度估计图),另外还有color颜色设置、linestyle线型设置、alpha设置透明度、grid设置网格等。
[python] view plain copy
se1.plot(kind = 'bar', color = 'g', alpha = 0.5, grid=True)
df.plot(kind = 'bar', alpha=0.5)
2)频数图、散点图
频数图采用hist绘制即可,单幅的散点图还得依靠matplotlib库,但pandas提供多幅散点图矩阵的快速绘图方法。
[python] view plain copy
se1.plot(kind = 'bar', color = 'g')
#对角线上图形设置为核密度图
pd.scatter_matrix(df, diagonal='kde')
3)清除和保存图形
有时候,我们希望清除掉当前图形或者干脆关闭绘图窗口。可以采用figure的clear()方法清除图形,采用matplotlib.pylab的close()方法则能够直接关闭图形窗口。
[python] view plain copy
df.plot()
#清除绘图
_.get_figure().clear()
#关闭窗口
plt.close()
3、python绘图的未来
Python同时具备强大的数据分析功能和Web开发功能,未来绘图的趋势将是更加紧密的联系数据分析和Web发布功能,所有绘制的图形应当能够方便的在网页上发布。数据分析人员和网页开发人员的工作耦合将会更加紧密。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Logic 模型特征与选择应用:构建项目规划与评估的逻辑框架 在项目管理、政策制定以及社会服务等领域,Logic 模型(逻辑模型 ...
2025-06-19SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的利器 在数据分析的众多方法中,Mann-Kendall(MK)检验凭借其对数据分 ...
2025-06-19CDA 数据分析能力与 AI 的一体化发展关系:重塑数据驱动未来 在数字化浪潮奔涌的当下,数据已然成为企业乃至整个社会发展进 ...
2025-06-19CDA 干货分享:统计学的应用 在数据驱动业务发展的时代浪潮中,统计学作为数据分析的核心基石,发挥着无可替代的关键作用。 ...
2025-06-18CDA 精益业务数据分析:解锁企业增长新密码 在数字化浪潮席卷全球的当下,数据已然成为企业最具价值的资产之一。如何精准地 ...
2025-06-18CDA 培训:开启数据分析师职业大门的钥匙 在大数据时代,数据分析师已成为各行业竞相争夺的关键人才。CDA(Certified Data ...
2025-06-18CDA 人才招聘市场分析:机遇与挑战并存 在数字化浪潮席卷各行业的当下,数据分析能力成为企业发展的核心竞争力之一,持有 C ...
2025-06-17CDA金融大数据案例分析:驱动行业变革的实践与启示 在金融行业加速数字化转型的当下,大数据技术已成为金融机构提升 ...
2025-06-17CDA干货:SPSS交叉列联表分析规范与应用指南 一、交叉列联表的基本概念 交叉列联表(Cross-tabulation)是一种用于展示两个或多 ...
2025-06-17TMT行业内审内控咨询顾问 1-2万 上班地址:朝阳门北大街8号富华大厦A座9层 岗位描述 1、为客户提供高质量的 ...
2025-06-16一文读懂 CDA 数据分析师证书考试全攻略 在数据行业蓬勃发展的今天,CDA 数据分析师证书成为众多从业者和求职者提升竞争力的重要 ...
2025-06-16数据分析师:数字时代的商业解码者 在数字经济蓬勃发展的今天,数据已成为企业乃至整个社会最宝贵的资产之一。无论是 ...
2025-06-16解锁数据分析师证书:开启数字化职业新篇 在数字化浪潮汹涌的当下,数据已成为驱动企业前行的关键要素。从市场趋势研判、用 ...
2025-06-16CDA 数据分析师证书含金量几何?一文为你讲清楚 在当今数字化时代,数据成为了企业决策和发展的重要依据。数据分析师这一职业 ...
2025-06-13CDA 数据分析师:数字化时代的关键人才 在当今数字化浪潮席卷全球的时代,数据已然成为驱动企业发展、推动行业变革的核心要素。 ...
2025-06-13CDA 数据分析师报考条件全解析 在大数据和人工智能时代,数据分析师成为了众多行业追捧的热门职业。CDA(Certified Data Analyst ...
2025-06-13“纲举目张,执本末从。”若想在数据分析领域有所收获,一套合适的学习教材至关重要。一套优质且契合需求的学习教材无疑是那关键 ...
2025-06-092025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23