京公网安备 11010802034615号
经营许可证编号:京B2-20210330
python绘图:matplotlib和pandas的应用
在进行数据分析时,绘图是必不可少的模式探索方式。用Python进行数据分析时,matplotlib和pandas是最常用到的两个库。
1、matplotlib库的应用
准备工作如下:打开ipython,输入命令分别导入numpy和matplotlib.pylab库。
[python] view plain copy
import numpy as np
import matplotlib.pylab as plt
1)创建fig
绘图第一步是创建绘图窗口fig。
[python] view plain copy
fig1 = plt.figure()
2)创建subplot
在窗口上添加AxesSubplot类型的子绘图区域,一个窗口可以添加多个子绘图区。
[python] view plain copy
ax1 = fig1.add_subplot(2,2,1)
ax4 = fig1.add_subplot(2,2,4)
3)subplot中绘图
调用子绘图区的方法,可以绘制点线图、频数图、散点图等常用图形。
注意:在同一个subplot中多次调用plot(),所得到的图形是相互覆盖的。
[python] view plain copy
ax1.plot(np.random.randn(50).cumsum(),'k--')
ax4.hist(np.random.randn(30))
4)各类参数设置
主要关注以下几种方法:set_xlims设置坐标轴的上下限、set_ticks设置坐标刻度、set_ticklabel设置坐标标注。
[python] view plain copy
ax1.set_xlim(-10,60)
ax1.set_xticks([0,20,40,60])
ax1.set_xticklabels(['a','b','c','d'])
5)清除和保存图形
用subplot的clear()方法可以清除现有的图形,用figure的savefig()保存图形到指定路径。
[python] view plain copy
ax1.clear()
#windows下的路径
fig1.savefig(‘.\\test.jpg’)
2、pandas库的应用
相比于利用matplotlib库绘图,采用pandas绘图要便捷得多。参照前一部分,同样需要导入pandas、numpy库。
[python] view plain copy
import pandas as pd
from pandas import Series,DataFrame
import numpy as np
1)plot方法及参数
对于Series和DataFrame类型的数据,可以直接调用两种类型对应的plot方法,绘图时自动采用索引值绘制横坐标,采用每一列数据绘制纵坐标。这里分别以两类数据为例。
[python] view plain copy
se1 = Series(np.random.randn(30).cumsum())
df = DataFrame({'a':np.random.randn(30),'b':np.random.randn(30)})
参数设置很方便,在plot()方法参数列表中添加相应参数值即可。常用的有:类型kind可设置为line(线图)、bar(垂直柱状图)、barh(水平柱状图)、kde(核密度估计图),另外还有color颜色设置、linestyle线型设置、alpha设置透明度、grid设置网格等。
[python] view plain copy
se1.plot(kind = 'bar', color = 'g', alpha = 0.5, grid=True)
df.plot(kind = 'bar', alpha=0.5)
2)频数图、散点图
频数图采用hist绘制即可,单幅的散点图还得依靠matplotlib库,但pandas提供多幅散点图矩阵的快速绘图方法。
[python] view plain copy
se1.plot(kind = 'bar', color = 'g')
#对角线上图形设置为核密度图
pd.scatter_matrix(df, diagonal='kde')
3)清除和保存图形
有时候,我们希望清除掉当前图形或者干脆关闭绘图窗口。可以采用figure的clear()方法清除图形,采用matplotlib.pylab的close()方法则能够直接关闭图形窗口。
[python] view plain copy
df.plot()
#清除绘图
_.get_figure().clear()
#关闭窗口
plt.close()
3、python绘图的未来
Python同时具备强大的数据分析功能和Web开发功能,未来绘图的趋势将是更加紧密的联系数据分析和Web发布功能,所有绘制的图形应当能够方便的在网页上发布。数据分析人员和网页开发人员的工作耦合将会更加紧密。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24