京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据能否帮助你找到下一任首席执行官
我已经就数据和分析如何改变招聘版图的问题进行了广泛的讨论。到目前为止,注意力大多聚焦于填补中低层职位空缺,例如施乐(Xerox)为呼叫中心职位寻找最佳候选人所做的工作。但填补首席执行官、首席财务官、首席营销官等C级高管以及其他高层职位空缺呢?
这些人将指引公司的发展方向。他们责任重大,作为回报,相当多的公司利润落入他们的腰包。如果在这一级别上作出错误的人事任命,发生灾难的可能性将非常明显。因此,填补这些职位空缺应该尽量减少猜测的成分。
大数据猎头
在本文中,我将着眼于猎头公司光辉国际(Korn Ferry)。该公司已经采取多项措施,确保C级高管的招聘工作深深植根于数据和分析。光辉国际擅长为最高层职位寻找候选人,拥有近50年的从业经验。在近几年里,该公司开始将大数据分析应用于他们获得的大量数据,以便为最好的职位寻找最合适的人选。
这使该公司可以详细描绘出在顶级职位上取得成功所需的各种能力、优点和经验。该公司与南加州大学的数据科学家合作,开始打造基于分析的人员配置平台(他们称之为光辉国际四维领导力和人才,简称KF4D)。
光辉国际全球人才评估和分析副总裁戴纳·兰迪斯(Dana Landis)对我说:“最大的发现在于,有一些普遍性因素在发挥作用,数量超过我们的预料。”数据揭示了一些强大的模式,突显了C级职位所需特点和品质的重要性,包括愿意终生学习,拥有高水平的情商(例如换位思考)、沟通能力和风险承受力。”
经验有多重要?
除了特点和能力之外,经验显然是在很多岗位上取得成功的必备条件。大数据分析也适用于此。比较分析可以显示出一个人在先前岗位上学会了哪些技能,以及在职务晋升时他们可能将需要哪些技能。
虽然光辉国际在评估高层职位候选人的过程中收集数据已有近50年的历史,但为了继续收集真正的大数据,该公司必须使数据收集过程自动化,以便获得大量的所需样本。
这意味着在可控条件下,将纷繁复杂、常常耗时好几天的评估过程压缩成耗时45分钟、只要有网络连接就可以随时随地完成的在线测试。兰迪斯对我说:“说起大数据,这涉及到评估全球几百万人,因此需要自我评估。”
当然,自我评估会使人们担心候选人可能会试图“欺骗系统”,提供他们认为雇主希望看到的答案。但问题中所包含的心理特点可以缓和这种担忧,比如让候选人对他们可能拥有的、看似同等重要的品质进行优先排序。
你是适合的人选吗?
系统评估的另一个重要因素是候选人有多么适合公司的文化。光辉国际研究分析部门光辉国际研究所的首席营销官和总裁迈克·迪斯特法诺(Mike Distefano)对我说:“我总是讲,人们因为他们的知识而受聘,因为他们的本性而被解雇。因此,我们花费大量时间来确保那个人适合公司文化。”
应聘者可以选择是对公司文化感到满意还是想要改变它。如果是前者,那么系统会认为他可能适合公司文化,如果是后者,那么系统会认为他可能是改变的代理人。
但在领导力方面,是否有一种品质(或者说特征)凌驾于其他所有品质之上?迪斯特法诺给出了肯定的答案。“如果我必须选择一种品质作为个人成功的指示器,那么它将是机敏。”数据分析显示,机敏的候选人往往在实现利润增长方面表现优异。因此,他的建议是“雇佣机敏者,但要确保他适合公司文化”。
如果没有得到庞大数据集(也就是大数据)支撑的预测模型和统计分析,那么这种对招聘C级高管的分析方法不可能实现。光辉国际使用亚马逊(Amazon)的AWS弹性计算云(Elastic Compute Cloud,简称EC2)和简单存储服务(Simple Storage Service,简称S3)来进行分布式存储和处理。算法由光辉国际内部开发,使用了R和Python等开源技术。
任命新首席执行官无疑是企业面临的最大挑战之一。如果没有进行可靠的数据分析,大多数公司不会就提供哪种产品或服务做出决定。现在是否是时候把同样深入的分析方法应用于顶级职位的招聘工作?通过在比较分析的支持下利用可量化数据评估顶级人才,企业能够确保填补领导职位空缺的人最有可能带领公司和公司里的每个人发展壮大。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20