
大数据能否帮助你找到下一任首席执行官
我已经就数据和分析如何改变招聘版图的问题进行了广泛的讨论。到目前为止,注意力大多聚焦于填补中低层职位空缺,例如施乐(Xerox)为呼叫中心职位寻找最佳候选人所做的工作。但填补首席执行官、首席财务官、首席营销官等C级高管以及其他高层职位空缺呢?
这些人将指引公司的发展方向。他们责任重大,作为回报,相当多的公司利润落入他们的腰包。如果在这一级别上作出错误的人事任命,发生灾难的可能性将非常明显。因此,填补这些职位空缺应该尽量减少猜测的成分。
大数据猎头
在本文中,我将着眼于猎头公司光辉国际(Korn Ferry)。该公司已经采取多项措施,确保C级高管的招聘工作深深植根于数据和分析。光辉国际擅长为最高层职位寻找候选人,拥有近50年的从业经验。在近几年里,该公司开始将大数据分析应用于他们获得的大量数据,以便为最好的职位寻找最合适的人选。
这使该公司可以详细描绘出在顶级职位上取得成功所需的各种能力、优点和经验。该公司与南加州大学的数据科学家合作,开始打造基于分析的人员配置平台(他们称之为光辉国际四维领导力和人才,简称KF4D)。
光辉国际全球人才评估和分析副总裁戴纳·兰迪斯(Dana Landis)对我说:“最大的发现在于,有一些普遍性因素在发挥作用,数量超过我们的预料。”数据揭示了一些强大的模式,突显了C级职位所需特点和品质的重要性,包括愿意终生学习,拥有高水平的情商(例如换位思考)、沟通能力和风险承受力。”
经验有多重要?
除了特点和能力之外,经验显然是在很多岗位上取得成功的必备条件。大数据分析也适用于此。比较分析可以显示出一个人在先前岗位上学会了哪些技能,以及在职务晋升时他们可能将需要哪些技能。
虽然光辉国际在评估高层职位候选人的过程中收集数据已有近50年的历史,但为了继续收集真正的大数据,该公司必须使数据收集过程自动化,以便获得大量的所需样本。
这意味着在可控条件下,将纷繁复杂、常常耗时好几天的评估过程压缩成耗时45分钟、只要有网络连接就可以随时随地完成的在线测试。兰迪斯对我说:“说起大数据,这涉及到评估全球几百万人,因此需要自我评估。”
当然,自我评估会使人们担心候选人可能会试图“欺骗系统”,提供他们认为雇主希望看到的答案。但问题中所包含的心理特点可以缓和这种担忧,比如让候选人对他们可能拥有的、看似同等重要的品质进行优先排序。
你是适合的人选吗?
系统评估的另一个重要因素是候选人有多么适合公司的文化。光辉国际研究分析部门光辉国际研究所的首席营销官和总裁迈克·迪斯特法诺(Mike Distefano)对我说:“我总是讲,人们因为他们的知识而受聘,因为他们的本性而被解雇。因此,我们花费大量时间来确保那个人适合公司文化。”
应聘者可以选择是对公司文化感到满意还是想要改变它。如果是前者,那么系统会认为他可能适合公司文化,如果是后者,那么系统会认为他可能是改变的代理人。
但在领导力方面,是否有一种品质(或者说特征)凌驾于其他所有品质之上?迪斯特法诺给出了肯定的答案。“如果我必须选择一种品质作为个人成功的指示器,那么它将是机敏。”数据分析显示,机敏的候选人往往在实现利润增长方面表现优异。因此,他的建议是“雇佣机敏者,但要确保他适合公司文化”。
如果没有得到庞大数据集(也就是大数据)支撑的预测模型和统计分析,那么这种对招聘C级高管的分析方法不可能实现。光辉国际使用亚马逊(Amazon)的AWS弹性计算云(Elastic Compute Cloud,简称EC2)和简单存储服务(Simple Storage Service,简称S3)来进行分布式存储和处理。算法由光辉国际内部开发,使用了R和Python等开源技术。
任命新首席执行官无疑是企业面临的最大挑战之一。如果没有进行可靠的数据分析,大多数公司不会就提供哪种产品或服务做出决定。现在是否是时候把同样深入的分析方法应用于顶级职位的招聘工作?通过在比较分析的支持下利用可量化数据评估顶级人才,企业能够确保填补领导职位空缺的人最有可能带领公司和公司里的每个人发展壮大。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15