京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大蜂数据,匠心精耕大数据风控
互联网金融火了,大数据风控也火了。于是,不断地有公司跳出来说自己要做大数据,为互联网金融企业提供大数据风控。大数据风控谁想做就能做好吗?
风控大数据挖掘,需专业,更需要工匠精神
做大数据风控,绕不开的首要问题,就是大数据源问题,即大数据的获取、存储、管理、分析等。在国内,目前公共征信机构尚待建设,征信数据无法完全以公共服务的形式获取,而且国内的民众、企业信用评级没有历史传统,信用社会建设处于初始阶段。因此,对信贷风控数据源进行多渠道、多样化、动态实时的大数据挖掘工作,是大数据风控必经之路。大数据风控真的是仅仅有数据抓取技术就能做好的吗?
“风控大数据挖掘,需专业,更需要工匠精神。通过技术手段,在网上抓取数据,对于很多专业技术人员来说,并不难,而真正困难的是,如何识别、过滤、分析出真正对风控有价值的信息,而这,如果没有金融风控领域的深厚经验和专注并结合行业顶尖数据挖掘的技术,是不大可能做到的。最终可能从大数据获得的只是更多错误的信号和噪音。”深圳大蜂数据运营总监Chris说。据了解,大蜂数据团队沁淫于金融风控行业已多年,一直专注于金融领域的数据分析、企业CRM及风控体系建设,服务过的客户遍及澳大利亚、东南亚、香港以及中国大陆的各大银行、保险机构及政府机构。如香港汇丰银行、穆迪亚太区总部、中国银行、招商银行、中信银行、广东发展银行、中国平安、中国海关、中国移动,中国联通、鹏元征信、渣打银行、大新银行、永亨银行、新加坡发展银行、泰国大城银行等。如同几年前的华为公司一样,大蜂团队多年默默地坚守着“匠人”的本分,在幕后精耕细作,推动着行业的发展。
“大蜂团队很多项目经理及研发负责人在汇丰银行、大通银行、IBM、SAP、SAS(美国赛仕)、华为、鹏元征信等知名机构有多年从业经验。对于大数据风控,有着深刻的技术理解和行业认知。针对互联网金融风控,最高效、最便捷的方式,应该是大数据风控,这正是整个公司目前正在聚力精耕的核心业务。”对于大数据源挖掘问题,Chris沉着且有信心,他说:“大数据风控目前还处于行业探索阶段,但这么多年,大蜂团队引以自豪的不仅是海量数据搜集及处理分析技术,并且拥有金融行业多维度非常核心的大数据资源,也可以通过技术快速精准获取其它相关数据。当然,做大数据,对数据的挖掘永无止境,目前,在大数据挖掘方面,我们需要做的,是持续丰富大数据源,并与行业一道,探索大数据应用的开放性和有效性等问题。”对于行业普遍关注的大数据风控数据源问题,Chris炮制任正非的话说,“在大数据信贷风控领域,大蜂是有‘工匠’精神的,我们够专业,我们更专注,持续拓展我们跨行业的经验和资源。大蜂数据最有可能真正做到大数据技术与风控应用的完美结合。”
信贷风控体系,比技术本身更让人着迷
据了解,大蜂数据创始人Dick Cheung是一位著名的数据分析和金融风控专家。身为英国皇家统计学会特许统计师的他,早期在欧洲、澳大利亚等知名机构从事数据分析及金融风控研究,回国后创立华策公司,专业为知名银行、保险、政府机构做风控体系建设,深谙国外金融风控体系建设,并熟知国内信贷风控行情。他个人坚信,金融风控,一定是一项体系性工程。宏观环境除外,信贷机构内部的风控,都绝不是仅仅有大数据源、有征信数据、有BAT某些特定维度的信息支撑就可以做好的。要真正做好信贷风控,特别是互金风控,需要从风控流程、风控人员管理、风控效率、风控质量、风控成本等多维度考量。有效的、高效的信贷风控体系建设,突破大数据技术障碍是基础,更重要的是要对金融风控领域以及互金行业有足够深刻的理解和研究。
执于这样的信念,大蜂团队从2013年投入研发大数据风控业务伊始,就着眼于建设贯穿信贷生命周期的大数据风控解决方案,从信贷高质量获客,到贷前审查、贷中决策,再到贷后监控,为信贷机构提供信贷全周期风控咨询和辅助决策服务。通过深入开展互金风控业务梳理、数据统计及分析建模,大蜂团队将复杂的大数据风控解决方案集成到几个智能简洁的操作系统中,即目前大量用户正在使用以及即将应用的“业务申请信息调查系统”、“业务审核欺诈识别系统”、“大数据评分系统”,以及“贷后监控系统”。后期,大蜂还计划将这些系统集成到一个统一的平台“蜂控在线”上。届时,通过该平台,所有的小额贷款公司、P2P平台、银行个贷部门、个人信用卡中心、贷款中介等机构的普通业务人员,都可以轻松搞定以前需要多个流程部门、很多专业人员才能完成的风控业务。
每每想着团队们正在从事的事业,看到系统给行业带来的风控变化,Chris都甚是激动,他说,“利用技术手段,打通风控流程,推进行业的发展,一直是我的梦想,也是公司的梦想,更是这个团队执着多年的梦想。信贷风控体系建设,比技术本身更让人着迷。”
降本增效提质,实现从“0”到“1”的改变
我们知道,目前的互联网金融领域,主战场在小微信贷以及P2P平台方面。一般来说,小微信贷及P2P平台,信贷业务显著特点是客户多、数目小、放款快,这就决定了互金行业无法向银行一样,通过传统的资产抵押或线下调查去开展风控,因此,很多小微型互金机构几乎没有风控部门,或者风控工作零散不成体系。即使成立专门风控部门,大多不大可能组建系统研发团队,而多数采取的是人海战术、人工审核,其风控效率总是有限,风控成本必定高企,风控流程及人员管理也会出现各种各样的问题。
从技术与应用的发展趋势来看,大数据风控,其网络化、平台化、智能化、全维度等特点,将能够很好的切合互金信贷风控的大规模、高效率、低成本、高质量的风控需求,能够从调查维度、信用评级、流程管理、风控成本等方面,全方位解决这些问题。
当然,新的技术与应用,总是不断迭代的过程,需要系统环境的推进,需要整个行业的不断试错、证伪、演进。对于很多互金机构的风控“空白”或“混乱”来说,大数据信贷风控,能够实现整个行业从“0”到“1”的改变,进而实现“1”的决定性价值。
从大蜂数据目前推向市场的几款大数据风控产品(系统)应用效果,对大数据风控价值可见一斑。从大蜂的部分合作客户捷信、证大速贷、安盛、盛进等互金小贷机构获悉,针对信贷审核业务的大数据风控平台——“业务申请信息调查系统”,他们已全面合作应用。在省时增效方面,至少比传统的人工信贷审核提升300%以上;在信审质量方面,可以灵活快速获取更为宽泛的数据维度,能够更加精准的对网贷申请人进行自动化大数据调查与核实,快速生成调查报告,辅助贷前准入决策。同时,他们正在洽谈接入大蜂数据的“业务审核欺诈识别系统”,这是一套智能大数据动态题库及交互式测试评分系统,能够有效解决贷款人伪造个人申请信息、冒用他人身份信息、“征信黑名单”不可查以及不良中介诱骗他人间接实施信贷欺诈等反欺诈难题,让传统的申请表“动”了起来,对于那些有准备、有预谋的欺诈行为,起到了很好的识别防范作用。据悉,一大批较有影响力的信贷机构正在与大蜂数据洽谈更深层次的风控合作事宜,包括大蜂数据正在公测的用于贷中决策的大数据评分系统、用于贷后的大数据监控系统等。
信贷风控,一个历久弥新的领域。古代的典当抵押、近代的钱庄银号信用抵押放款、现当代的银行信用贷,每个时期的借贷行为,都伴随着相应的风控模式。信贷的历史有多久,信贷风控的历史就有多远,信贷方式与风控模式相伴相生。我们相信,伴随着互联网金融的世界范围发展,互联网金融信贷也必将会迎来她全新的风控模式——大数据信贷风控模式。而大蜂数据的历史使命,首先是要做好一个“工匠”、当好一个“卫士”。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22