
一元线性回归,顾名思义,仅有一个自变量的回归模型,研究的是一个因素对结果的影响,可以用于预测,也经常被称之为简单线性回归分析。它的模型表达式为:
Y=a+bX+e
回归的过程就是要确定截距a和回归系数b的具体值,当然前提条件是模型具备统计学意义。
看案例:
案例数据很好理解,是常见的销售数据,反映的是某公司太阳镜一年12个月的具体销售情况。试分析当广告费用为15万元时,预测当月的销售量值。
几乎所有的回归分析问题,首先都从一个散点图开始,散点图能够快速而且直观的看到自变量和应变量之间是否包含线性关系,如果图形上看不出明显线性关系的话,后续的分析效果也不会太好。
散点图菜单步骤:图形→旧对话框→散点图→简单算点图,自变量广告费用用作X轴,销售量用作Y轴。
由散点图可以看出,增加广告投入销售量随之上升,一个正相关线性关系,图示的作用在于让我们对预测销售量充满信心,接下来开始一元线性回归。
一调出主面板
菜单栏中点击【分析】→【回归】→【线性】,弹出线性回归主功能面板,销售量作为因变量,广告费用作为自变量,散点图显示二者有较强的线性关系,我们将采取强制【输入】的方法要求建立一元回归模型。
二统计按钮参数设置
默认勾选回归系数的【估算值】,要求SPSS软件为我们输出回归系数,也就是模型中的参数b,同时默认勾选【模型模拟】,要求软件帮助我们建议回归模型是否具有统计学意义。
以上这两个参数是线性回归分析必选设置,不能忽略不计。在此基础上,我们可以根据实际需要选择其他参数。
本案例勾选【德宾沃森】,要求就模型残差进行Durbin Watson检验,用于判断残差是否独立,作为一个基础条件来判断数据是否适合做线性回归。
三图按钮参数设置
上半部分有些复杂,允许我们定制残差的图形,作为入门理解,此处建议直接勾选底部【直方图】和【正态概率图】,要求软件输出标准化残差图,同样用于判断数据是否适合进行线性回归。
四保存按钮参数设置
我们此处分析的目的是为了利用广告费用来预测销售量,保存按钮参数与预测和残差有关,可以勾选【未标准化】预测值。
在这个对话框上面,有许多参数可选,严谨态度出发的话,建议在这里深入学习,本例暂时不讨论。
五选项按钮参数设置
这里建议接受软件默认选项即可。
主要参数基本设置完成,现在点击主面板下方的【确定】按钮,要求SPSS开始执行此次简单线性回归分析过程,我们坐等结果。
六主要结果解释
1、模型摘要表
第三列R方,在线性回归中也称为判定系数,用于判定线性方程拟合优度的重要指标,体现了回归模型解释因变量变异的能力,通常认为R方需达到60%,最好是80%以上,当然是接近1更好。
本例R方=0.93,初步判断模型拟合效果良好。
2、方差分析表
刚才我们建立的回归模型是不是有统计意义,增加广告费用可销售量这样的线性关系是否显著,方差分析表可以回答这些问题。
直接读取最后一列,显著性值=0.000<0.01<0.05,表明由自变量“广告费用”和因变量“销售量”建立的线性关系回归模型具有极显著的统计学意义。
3、回归系数表
这是有关此处建模的最直接结果,读取未标准化系数,我们可以轻松写出模型表达式,如下:
Y=76.407+7.662X
关键的是,自变量广告费用的回归系数通过检验,t检验原假设回归系数没有意义,由最后一列回归系数显著性值=0.000<0.01<0.05,表明回归系数b存在,有统计学意义,广告费用与销售量之间是正比关系,而且极显著。
OK,现在我们有了回归模型表达式在手里,心里总会油然沉甸甸的,因为就连小学生都知道,只要把广告费用的具体值带入回归方程式中,就可以轻松计算出对应的销售量数据。
不急,在开始预测前还有一项关键操作,我们需要检验数据是否可以做回归分析,它对数据的要求是苛刻的,有必要就残差进行分析。
七适用性检验
1、残差正态性检验
从标准化残差直方图来看,呈一个倒扣的钟形,左右两侧不完全对称,有一定瑕疵;从标准化残差的P-P图来看,散点并没有全部靠近斜线,并不完美,综合而言,残差正态性结果不是最好的,当然在现实分析当中,理想状态的正态并不多见,接近或近似即可考虑接受。
2、模型残差独立性检验
采用Durbin Watson检验来判断,回过头来再看模型摘要表。
DW=1.464,查询 Durbin Watson table 可以发现本例DW值恰好出在无自相关性的值域之中,认定残差独立,通过检验。
实际上关于回归模型的适应性检验还有其他项目,比如异常点、共线性等检验项目,本例暂不展开,有兴趣的读者可以自行学习。
根据以上残差正态性和残差独立性检验的结果,本例认为案例数据基本满足线性回归要求(值得在其他应用中讨论,本例仅展示主要过程),所建立的模型可根据拟合质量进行预测。
八预测
通过前面的一系列分析和论证,我们现在已经得到回归模型的方程式:Y=76.407+7.662X,
我们的预测任务是当广告投入达15万元时,太阳镜的销售量,具体计算:Y=76.407+7.662*15=191.337,
至此,建立了广告和销售量之间的线性回归模型,并且实施了预测,那么模型的准确性到底如何呢,有待最终实际销售比对分析。本例结束。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18