
一元线性回归,顾名思义,仅有一个自变量的回归模型,研究的是一个因素对结果的影响,可以用于预测,也经常被称之为简单线性回归分析。它的模型表达式为:
Y=a+bX+e
回归的过程就是要确定截距a和回归系数b的具体值,当然前提条件是模型具备统计学意义。
看案例:
案例数据很好理解,是常见的销售数据,反映的是某公司太阳镜一年12个月的具体销售情况。试分析当广告费用为15万元时,预测当月的销售量值。
几乎所有的回归分析问题,首先都从一个散点图开始,散点图能够快速而且直观的看到自变量和应变量之间是否包含线性关系,如果图形上看不出明显线性关系的话,后续的分析效果也不会太好。
散点图菜单步骤:图形→旧对话框→散点图→简单算点图,自变量广告费用用作X轴,销售量用作Y轴。
由散点图可以看出,增加广告投入销售量随之上升,一个正相关线性关系,图示的作用在于让我们对预测销售量充满信心,接下来开始一元线性回归。
一调出主面板
菜单栏中点击【分析】→【回归】→【线性】,弹出线性回归主功能面板,销售量作为因变量,广告费用作为自变量,散点图显示二者有较强的线性关系,我们将采取强制【输入】的方法要求建立一元回归模型。
二统计按钮参数设置
默认勾选回归系数的【估算值】,要求SPSS软件为我们输出回归系数,也就是模型中的参数b,同时默认勾选【模型模拟】,要求软件帮助我们建议回归模型是否具有统计学意义。
以上这两个参数是线性回归分析必选设置,不能忽略不计。在此基础上,我们可以根据实际需要选择其他参数。
本案例勾选【德宾沃森】,要求就模型残差进行Durbin Watson检验,用于判断残差是否独立,作为一个基础条件来判断数据是否适合做线性回归。
三图按钮参数设置
上半部分有些复杂,允许我们定制残差的图形,作为入门理解,此处建议直接勾选底部【直方图】和【正态概率图】,要求软件输出标准化残差图,同样用于判断数据是否适合进行线性回归。
四保存按钮参数设置
我们此处分析的目的是为了利用广告费用来预测销售量,保存按钮参数与预测和残差有关,可以勾选【未标准化】预测值。
在这个对话框上面,有许多参数可选,严谨态度出发的话,建议在这里深入学习,本例暂时不讨论。
五选项按钮参数设置
这里建议接受软件默认选项即可。
主要参数基本设置完成,现在点击主面板下方的【确定】按钮,要求SPSS开始执行此次简单线性回归分析过程,我们坐等结果。
六主要结果解释
1、模型摘要表
第三列R方,在线性回归中也称为判定系数,用于判定线性方程拟合优度的重要指标,体现了回归模型解释因变量变异的能力,通常认为R方需达到60%,最好是80%以上,当然是接近1更好。
本例R方=0.93,初步判断模型拟合效果良好。
2、方差分析表
刚才我们建立的回归模型是不是有统计意义,增加广告费用可销售量这样的线性关系是否显著,方差分析表可以回答这些问题。
直接读取最后一列,显著性值=0.000<0.01<0.05,表明由自变量“广告费用”和因变量“销售量”建立的线性关系回归模型具有极显著的统计学意义。
3、回归系数表
这是有关此处建模的最直接结果,读取未标准化系数,我们可以轻松写出模型表达式,如下:
Y=76.407+7.662X
关键的是,自变量广告费用的回归系数通过检验,t检验原假设回归系数没有意义,由最后一列回归系数显著性值=0.000<0.01<0.05,表明回归系数b存在,有统计学意义,广告费用与销售量之间是正比关系,而且极显著。
OK,现在我们有了回归模型表达式在手里,心里总会油然沉甸甸的,因为就连小学生都知道,只要把广告费用的具体值带入回归方程式中,就可以轻松计算出对应的销售量数据。
不急,在开始预测前还有一项关键操作,我们需要检验数据是否可以做回归分析,它对数据的要求是苛刻的,有必要就残差进行分析。
七适用性检验
1、残差正态性检验
从标准化残差直方图来看,呈一个倒扣的钟形,左右两侧不完全对称,有一定瑕疵;从标准化残差的P-P图来看,散点并没有全部靠近斜线,并不完美,综合而言,残差正态性结果不是最好的,当然在现实分析当中,理想状态的正态并不多见,接近或近似即可考虑接受。
2、模型残差独立性检验
采用Durbin Watson检验来判断,回过头来再看模型摘要表。
DW=1.464,查询 Durbin Watson table 可以发现本例DW值恰好出在无自相关性的值域之中,认定残差独立,通过检验。
实际上关于回归模型的适应性检验还有其他项目,比如异常点、共线性等检验项目,本例暂不展开,有兴趣的读者可以自行学习。
根据以上残差正态性和残差独立性检验的结果,本例认为案例数据基本满足线性回归要求(值得在其他应用中讨论,本例仅展示主要过程),所建立的模型可根据拟合质量进行预测。
八预测
通过前面的一系列分析和论证,我们现在已经得到回归模型的方程式:Y=76.407+7.662X,
我们的预测任务是当广告投入达15万元时,太阳镜的销售量,具体计算:Y=76.407+7.662*15=191.337,
至此,建立了广告和销售量之间的线性回归模型,并且实施了预测,那么模型的准确性到底如何呢,有待最终实际销售比对分析。本例结束。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29