
大数据时代,数据驱动做决策
IBM提出大数据的大量化(Volume)、多样化(Variety)和快速化(Velocity)“三V”特征。随着大数据对于商业“价值”的重要性提升,“价值(Value)”成为了大数据的第四个重要特征,同时得到了社会的广泛关注与研究。
大数据,成为了企业的核心资产,资产得以高效利用,得到效益的高度转化才是大数据的价值体现,这就需要通过数据挖掘来进行。
一个数据挖掘项目的生命周期在不同的场景下并不是完全一样的。CRISP-DM是官方标准之一,也是对数据挖掘过程的全面评述,它包含有6个阶段:
1、商业理解
最初的阶段集中在理解项目目标和从业务的角度理解需求,同时将这些转化为数据挖掘问题的定义和完成目标的初步计划。
2、数据理解
数据理解阶段是从初始的数据收集开始的,目的是熟悉数据,识别数据的质量问题,首次发现数据的内部属性,或是探测引起我们产生兴趣的子集从而形成隐含信息的假设。
3、数据准备
在数据准备阶段包括从未处理的数据中构造最终数据集的所有活动。这些数据将是模型工具的输入值。这个阶段的任务有的能执行多次,没有任何规定的顺序。任务包括选择表、记录和属性,以及为模型工具转换和清洗数据。
4、数据模型
在这个阶段,可以选择和应用不同的模型技术,模型参数被调整到最佳的数值。一般,有些技术可以解决一类相同的数据挖掘问题。有些技术在数据形成上有特殊的要求,因此需要经常跳回到数据准备阶段。
5、评估
在开始部署模型之前,重要的事情彻底地评估模型,检查构造模型的步骤,确保模型可以完成业务目标。这个阶段的关键目的是确定是否有重要的业务问题没有被充分考虑。在这个阶段结束后,对于一个数据挖掘结果使用的决定必须达成。
6、发布
通常,模型的创建不是项目的结束。模型的作用是从数据中找到知识,并且所获得的知识要以便于用户使用的方式重新组织和展现。根据需求,在这个阶段可以产生简单的报告,或是实现一个比较复杂、可重复的数据挖掘过程。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13