
大数据时代,数据驱动做决策
IBM提出大数据的大量化(Volume)、多样化(Variety)和快速化(Velocity)“三V”特征。随着大数据对于商业“价值”的重要性提升,“价值(Value)”成为了大数据的第四个重要特征,同时得到了社会的广泛关注与研究。
大数据,成为了企业的核心资产,资产得以高效利用,得到效益的高度转化才是大数据的价值体现,这就需要通过数据挖掘来进行。
一个数据挖掘项目的生命周期在不同的场景下并不是完全一样的。CRISP-DM是官方标准之一,也是对数据挖掘过程的全面评述,它包含有6个阶段:
1、商业理解
最初的阶段集中在理解项目目标和从业务的角度理解需求,同时将这些转化为数据挖掘问题的定义和完成目标的初步计划。
2、数据理解
数据理解阶段是从初始的数据收集开始的,目的是熟悉数据,识别数据的质量问题,首次发现数据的内部属性,或是探测引起我们产生兴趣的子集从而形成隐含信息的假设。
3、数据准备
在数据准备阶段包括从未处理的数据中构造最终数据集的所有活动。这些数据将是模型工具的输入值。这个阶段的任务有的能执行多次,没有任何规定的顺序。任务包括选择表、记录和属性,以及为模型工具转换和清洗数据。
4、数据模型
在这个阶段,可以选择和应用不同的模型技术,模型参数被调整到最佳的数值。一般,有些技术可以解决一类相同的数据挖掘问题。有些技术在数据形成上有特殊的要求,因此需要经常跳回到数据准备阶段。
5、评估
在开始部署模型之前,重要的事情彻底地评估模型,检查构造模型的步骤,确保模型可以完成业务目标。这个阶段的关键目的是确定是否有重要的业务问题没有被充分考虑。在这个阶段结束后,对于一个数据挖掘结果使用的决定必须达成。
6、发布
通常,模型的创建不是项目的结束。模型的作用是从数据中找到知识,并且所获得的知识要以便于用户使用的方式重新组织和展现。根据需求,在这个阶段可以产生简单的报告,或是实现一个比较复杂、可重复的数据挖掘过程。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23