京公网安备 11010802034615号
经营许可证编号:京B2-20210330
R语言在生态学研究中的应用分析
随着观测手段的不断进步和长期观测数据的不断积累,加上数据共享机制不断完善,生态学研究已经跨入的大数据的时代。面对巨量的原始数据,一个生态学者需要运用相当可观的数学知识和编程技巧来把它们转化成方便处理的有效数据。因此,现代生态学研究对研究者的数据分析和处理能力要求更高。传统的统计软件已经很难满足当前的数据分析需求。
近年来,R语言以其灵活、开放、易于掌握、免费等诸多优点,在生态学研究各领域迅速传播并赢得广大研究者的青睐和应用。为了证实这个结论,我们通过逐篇查阅的方式,统计近5年来(2012-2016)20种影响因子3以上与生态学SCI杂志20325篇研究论文(不包括综述)使用R语言作为数据分析工具的情况(图1和图2)。
结果表明,2012年这20种刊物总发表研究论文数为3845篇,使用R语言作为数据分析工具的为1309篇,使用比例为33.9%;2013年总发表论文数为4180篇,使用R语言为1607篇,使用比例为38.7%;2014年总发表论文数为4169篇,使用R语言为1831篇,使用比例为42.1%; 2015年总发表论文数为4030篇,使用R语言为1942篇,使用比例为49.0%;2016年总发表论文数为4101篇,使用R语言为2206篇,使用比例为54.2%。可见近5年来,生态学研究论文使用R语言作为分析工具比例呈现快速增长趋势,并在2016年已经超过50%,占居半壁江山,以不争的事实说明R语言已经成为生态学研究中最主要的数据分析工具(图2)。
2016年使用R比例最高前三个刊物分别为Ecography(75.6%), Journal of Ecology(73.8%), Methods in Ecology and Evolution (70.1%),这三个刊物使用R的论文比例均超过70%。
图1.近5年来20种SCI生态学杂志所发表的研究论文使用R语言作为数据分析工具的比例趋势
图2. 20种SCI生态学杂志所发表的研究论文使用R语言作为数据分析工具的平均比例趋势
以上统计结果表明,在国际上选择R语言作为生态学数据分析工具已经成为“标配”。但相比国际SCI刊物,国内生态学刊物内论文选择R作为数据分析工具比例却比较低。我们用同样的方法查阅了4个国内生态学杂志:《生态学报》、《植物生态学报》、《生物多样性》和《应用生态学报》近5年来所发论文R语言使用比例。结果表明,虽然使用R的比例也正呈现逐年增加的趋势(图3),但是还是处于相当低的水平。
《植物生态学报》和《生物多样性》这两个刊物目前已经达到10%以上,但是《生态学报》和《应用生态学报》这两个刊物的使用R比例仅有1.3%左右,跟SCI刊物比相差甚远。说明R语言在国内学者和研究生中使用普及率并不高,可能有几个方面的原因:1)虽然R语言的设计之初就是避免通过大量编程实现统计算法,但最基本的编程能力还是需要的,因此对于一般非计算机专业的研究人员来说无疑提高了难度。2)掌握统计学知识,提高逻辑分析能力是用好R的非常重要的条件,但国内研究人员和研究生统计学基础普遍比国外的同行弱;3)与其他的技能一样,学会熟练使用R语言也并非一日之功。当前国内普遍浮躁的学术氛围下,很多研究人员和研究生们不愿意花很多时间来学习R语言,他们更习惯打开一个菜单驱动的统计平台,并在几分钟内得到结果;4)最后应该归咎于R语言所有帮助系统都为英文版本,在国内普及起来难度比较大。
总之,在学术界R语言得到广泛的应用,这已经成为大家公认的事实。如果现在不会R,你没有优势可言;如果5年后,你还不会R,那你差不多就可以被淘汰了。当然R毕竟只是程序语言,是编程软件,是解决问题的手段。它犹如降龙十八掌的最后一掌,是前面所有功力的集中体现。掌握统计学知识,提高逻辑分析能力是我们用好R需要修炼的内功。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27