
一个数据分析报告的框架,要分析数据,你先得有一个故事
一个项目到了汇总的时候,免不了形成一份相对完整的数据分析报告。
报告也需要多种情况。按照应用场合可以划分多种类型:有的需要向上邮件汇报,有的需要给项目组里一个交代,有的是需要直接进行展示汇报等。按照项目类型也可以划分多种类型:新项目上线效果评估,AB test结果,日常数据汇总,活动数据分析等。
文本也好,PPT也罢,数据分析报告核心的思路都是相通的。
1. 你要一个故事
我自己有个想法,就是产品经理应该多学习相关领域的知识,比如学一些基础的设计规范、交互原则、营销知识,心理学知识,算法知识等等。除了一些明显的对工作的帮助,也能帮助自己扩展思路。其实做好报告,就应向咨询机构或者投资机构学习。
一个报告核心不是包含很多内容,让听众或者读者去花时间理解,核心是讲好一个简单的故事。咨询和投资机构做BP之前,会先花时间理清楚storyline。其实各种报告都应该这样,先理清楚你要讲的故事。
2. 一个数据分析报告的框架
这里列出一个我个人比较喜欢的报告框架,可能针对不同的报告场景需要有所调整(比如删除部分步骤,或者增加部分细节):
项目背景:简述项目相关背景,为什么做,目的是什么
项目进度:综述项目的整体进程,以及目前的情况
名词解释:关键性指标定义是什么,为什么这么定义
数据获取方法:如何取样,怎么获取到的数据,会有哪些问题
数据概览:重要指标的趋势,变化情况,重要拐点成因解释
数据拆分:根据需要拆分不同的维度,作为细节补充
结论汇总:汇总之前数据分析的主要结论,作为概览
后续改进:分析目前存在的问题,并给出解决改进防范
致谢
附件:详细数据
项目背景 & 项目进度
项目背景,需要简述项目相关背景,为什么做,目的是什么。项目进度,需要综述项目的整体进程,以及目前的情况。这两点其实没什么可说的,如果对象是项目成员,可以写简单一些,如果对象是对项目不了解的人,则需要多写 一些,但还是要尽量用最简单的话,跟别人讲明白。
名词解释 & 数据获取方法
名词解释:关键性指标定义是什么,为什么这么定义。这点是很多人忽略的,其实很多时候数据的误解都是因为对指标没有统一的定义。举例而言,点击率可以是点击次数/浏览次数,也可以是点击人数/浏览人数。人数可能按访问去重,也可能按天去重。如果没有清晰的解释,不同人理解不同,对整个数据的可读性就大打折扣。
数据获取方法:如何取样,怎么获取到的数据,会有哪些问题。原始数据往往有一些缺憾,要经过数据清洗剔除噪声,也需要部分假设进行数据补全。数据清洗和数据补全的方法需要跟汇报对象说明并且获得认可,让对方对于置信度有一个估计。
数据概览 & 数据拆分
数据概览,需要有重要指标的趋势,变化情况,重要拐点成因解释。
数据拆分,需要根据需要拆分不同的维度,作为细节补充。
这里基本上就是之前说的数据分析方法了。如果需要对方知道对比或者趋势,则使用图,如果需要对方知道具体数据,则使用表。表格对需要强调的数字要做明显标识。需要注意的点是:核心指标要少而关键,拆分指标要有意义且详细。同时如果是PPT的话,每页说明白一个结论或者解释清楚一个趋势足以。关键性结论要用一句话能说清楚。
结论汇总 & 后续改进
结论汇总,基本是对之前数据分析阶段的数据进行汇总,形成完整的结论。
后续改进,需要在数据分析的结论和问题的基础上,对后续的迭代和改进措施作出方向性的说明。这部分其实很多时候也是分析的根本目的。
致谢 & 附件
致谢是对项目组合相关协助部门的致谢,基本上对于项目组和相关协助部门而言,也希望自己的工作或者积极配合能看到有效的数据结果。在之后的合作中,也会更加融洽。
附件是需要附赠更多没有必要在数据报告中体现但是仍然有价值的数据。对于PPT而言,这部分也可以放在PPT致谢之后,与会同事有疑问,可以随时翻到最后解释。
3. 总结
一个产品,如果你不能衡量它,你就不能了解它,自然而然,你就无法改进它。这是说数据。
而数据报告的意义也是类似,项目完成之后需要完整汇报,这样无论是对上汇报还是对团队而言,都是有重要意义。
突然想到一个事情。去年的时候做了一个内部数据平台,到了取名字的时候,我用了dice。为什么叫dice呢?
这得从物理说起(开启神棍模式)。物理学不断前行,之前人们认为物理学是决定论的,只要知道系统的初始值和足够细节,就能知道之后系统的演化路径。后来发现不是这样的,对于一个基本粒子而言,观测之前,粒子状态和位置是不可预测的。爱因斯坦说“上帝不会掷骰子”,然后后续的研究,更多的是支持上帝是掷骰子的。这也是dice的来源。
即使是上帝视角,也不可能知道提前知道数据的结果。那么作为产品经理而言,尊重数据结果,并分析形成结论,远比相信一些所谓的方法论的条条框框好得多。
关于数据,能讲的还有很多,之后再开新坑。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26CDA 数据分析师会被 AI 取代吗? 在当今数字化时代,数据的重要性日益凸显,数据分析师成为了众多企业不可或缺的角色 ...
2025-06-26CDA 数据分析师证书考取全攻略 在数字化浪潮汹涌的当下,数据已成为企业乃至整个社会发展的核心驱动力。数据分析师作 ...
2025-06-25人工智能在数据分析的应用场景 在数字化浪潮席卷全球的当下,数据以前所未有的速度增长,传统的数据分析方法逐渐难以满足海 ...
2025-06-25评估模型预测为正时的准确性 在机器学习与数据科学领域,模型预测的准确性是衡量其性能优劣的核心指标。尤其是当模型预测结 ...
2025-06-25CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-06-24金融行业的大数据变革:五大应用案例深度解析 在数字化浪潮中,金融行业正经历着深刻的变革,大数据技术的广泛应用 ...
2025-06-24Power Query 中实现移动加权平均的详细指南 在数据分析和处理中,移动加权平均是一种非常有用的计算方法,它能够根据不同数据 ...
2025-06-24数据驱动营销革命:解析数据分析在网络营销中的核心作用 在数字经济蓬勃发展的当下,网络营销已成为企业触达消费者 ...
2025-06-23随机森林模型与 OPLS-DA 的优缺点深度剖析 在数据分析与机器学习领域,随机森林模型与 OPLS-DA(正交偏最小二乘法判 ...
2025-06-23CDA 一级:开启数据分析师职业大门的钥匙 在数字化浪潮席卷全球的今天,数据已成为企业发展和决策的核心驱动力,数据分析师 ...
2025-06-23透视表内计算两个字段乘积的实用指南 在数据处理与分析的过程中,透视表凭借其强大的数据汇总和整理能力,成为了众多数据工 ...
2025-06-20CDA 一级考试备考时长全解析,助你高效备考 CDA(Certified Data Analyst)一级认证考试,作为数据分析师领域的重要资格认证, ...
2025-06-20统计学模型:解锁数据背后的规律与奥秘 在数据驱动决策的时代,统计学模型作为挖掘数据价值的核心工具,发挥着至关重要的作 ...
2025-06-20Logic 模型特征与选择应用:构建项目规划与评估的逻辑框架 在项目管理、政策制定以及社会服务等领域,Logic 模型(逻辑模型 ...
2025-06-19SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的利器 在数据分析的众多方法中,Mann-Kendall(MK)检验凭借其对数据分 ...
2025-06-19