京公网安备 11010802034615号
经营许可证编号:京B2-20210330
一个数据分析报告的框架,要分析数据,你先得有一个故事
一个项目到了汇总的时候,免不了形成一份相对完整的数据分析报告。
报告也需要多种情况。按照应用场合可以划分多种类型:有的需要向上邮件汇报,有的需要给项目组里一个交代,有的是需要直接进行展示汇报等。按照项目类型也可以划分多种类型:新项目上线效果评估,AB test结果,日常数据汇总,活动数据分析等。
文本也好,PPT也罢,数据分析报告核心的思路都是相通的。
1. 你要一个故事
我自己有个想法,就是产品经理应该多学习相关领域的知识,比如学一些基础的设计规范、交互原则、营销知识,心理学知识,算法知识等等。除了一些明显的对工作的帮助,也能帮助自己扩展思路。其实做好报告,就应向咨询机构或者投资机构学习。
一个报告核心不是包含很多内容,让听众或者读者去花时间理解,核心是讲好一个简单的故事。咨询和投资机构做BP之前,会先花时间理清楚storyline。其实各种报告都应该这样,先理清楚你要讲的故事。
2. 一个数据分析报告的框架
这里列出一个我个人比较喜欢的报告框架,可能针对不同的报告场景需要有所调整(比如删除部分步骤,或者增加部分细节):
项目背景:简述项目相关背景,为什么做,目的是什么
项目进度:综述项目的整体进程,以及目前的情况
名词解释:关键性指标定义是什么,为什么这么定义
数据获取方法:如何取样,怎么获取到的数据,会有哪些问题
数据概览:重要指标的趋势,变化情况,重要拐点成因解释
数据拆分:根据需要拆分不同的维度,作为细节补充
结论汇总:汇总之前数据分析的主要结论,作为概览
后续改进:分析目前存在的问题,并给出解决改进防范
致谢
附件:详细数据
项目背景 & 项目进度
项目背景,需要简述项目相关背景,为什么做,目的是什么。项目进度,需要综述项目的整体进程,以及目前的情况。这两点其实没什么可说的,如果对象是项目成员,可以写简单一些,如果对象是对项目不了解的人,则需要多写 一些,但还是要尽量用最简单的话,跟别人讲明白。
名词解释 & 数据获取方法
名词解释:关键性指标定义是什么,为什么这么定义。这点是很多人忽略的,其实很多时候数据的误解都是因为对指标没有统一的定义。举例而言,点击率可以是点击次数/浏览次数,也可以是点击人数/浏览人数。人数可能按访问去重,也可能按天去重。如果没有清晰的解释,不同人理解不同,对整个数据的可读性就大打折扣。
数据获取方法:如何取样,怎么获取到的数据,会有哪些问题。原始数据往往有一些缺憾,要经过数据清洗剔除噪声,也需要部分假设进行数据补全。数据清洗和数据补全的方法需要跟汇报对象说明并且获得认可,让对方对于置信度有一个估计。
数据概览 & 数据拆分
数据概览,需要有重要指标的趋势,变化情况,重要拐点成因解释。
数据拆分,需要根据需要拆分不同的维度,作为细节补充。
这里基本上就是之前说的数据分析方法了。如果需要对方知道对比或者趋势,则使用图,如果需要对方知道具体数据,则使用表。表格对需要强调的数字要做明显标识。需要注意的点是:核心指标要少而关键,拆分指标要有意义且详细。同时如果是PPT的话,每页说明白一个结论或者解释清楚一个趋势足以。关键性结论要用一句话能说清楚。
结论汇总 & 后续改进
结论汇总,基本是对之前数据分析阶段的数据进行汇总,形成完整的结论。
后续改进,需要在数据分析的结论和问题的基础上,对后续的迭代和改进措施作出方向性的说明。这部分其实很多时候也是分析的根本目的。
致谢 & 附件
致谢是对项目组合相关协助部门的致谢,基本上对于项目组和相关协助部门而言,也希望自己的工作或者积极配合能看到有效的数据结果。在之后的合作中,也会更加融洽。
附件是需要附赠更多没有必要在数据报告中体现但是仍然有价值的数据。对于PPT而言,这部分也可以放在PPT致谢之后,与会同事有疑问,可以随时翻到最后解释。
3. 总结
一个产品,如果你不能衡量它,你就不能了解它,自然而然,你就无法改进它。这是说数据。
而数据报告的意义也是类似,项目完成之后需要完整汇报,这样无论是对上汇报还是对团队而言,都是有重要意义。
突然想到一个事情。去年的时候做了一个内部数据平台,到了取名字的时候,我用了dice。为什么叫dice呢?
这得从物理说起(开启神棍模式)。物理学不断前行,之前人们认为物理学是决定论的,只要知道系统的初始值和足够细节,就能知道之后系统的演化路径。后来发现不是这样的,对于一个基本粒子而言,观测之前,粒子状态和位置是不可预测的。爱因斯坦说“上帝不会掷骰子”,然后后续的研究,更多的是支持上帝是掷骰子的。这也是dice的来源。
即使是上帝视角,也不可能知道提前知道数据的结果。那么作为产品经理而言,尊重数据结果,并分析形成结论,远比相信一些所谓的方法论的条条框框好得多。
关于数据,能讲的还有很多,之后再开新坑。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA(Certified Data Analyst),是在数字经济大背景和人工智能时代趋势下,源自中国,走向世界,面向全行业的专业技能认证,旨 ...
2025-12-29在数据分析领域,周期性是时间序列数据的重要特征之一——它指数据在一定时间间隔内重复出现的规律,广泛存在于经济、金融、气象 ...
2025-12-29数据分析师的核心价值在于将海量数据转化为可落地的商业洞察,而高效的工具则是实现这一价值的关键载体。从数据采集、清洗整理, ...
2025-12-29在金融、零售、互联网等数据密集型行业,量化策略已成为企业提升决策效率、挖掘商业价值的核心工具。CDA(Certified Data Analys ...
2025-12-29CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-26在数字化转型浪潮下,审计行业正经历从“传统手工审计”向“大数据智能审计”的深刻变革。教育部发布的《大数据与审计专业教学标 ...
2025-12-26统计学作为数学的重要分支,是连接数据与决策的桥梁。随着数据规模的爆炸式增长和复杂问题的涌现,传统统计方法已难以应对高维、 ...
2025-12-26数字化浪潮席卷全球,数据已成为企业核心生产要素,“用数据说话、用数据决策”成为企业生存与发展的核心逻辑。在这一背景下,CD ...
2025-12-26箱线图(Box Plot)作为数据分布可视化的核心工具,凭借简洁的结构直观呈现数据的中位数、四分位数、异常值等关键信息,广泛应用 ...
2025-12-25在数据驱动决策的时代,基于历史数据进行精准预测已成为企业核心需求——无论是预测未来销售额、客户流失概率,还是产品需求趋势 ...
2025-12-25在数据驱动业务的实践中,CDA(Certified Data Analyst)数据分析师的核心工作,本质上是通过“指标”这一数据语言,解读业务现 ...
2025-12-25在金融行业的数字化转型进程中,SQL作为数据处理与分析的核心工具,贯穿于零售银行、证券交易、保险理赔、支付结算等全业务链条 ...
2025-12-24在数据分析领域,假设检验是验证“数据差异是否显著”的核心工具,而独立样本t检验与卡方检验则是其中最常用的两种方法。很多初 ...
2025-12-24在企业数字化转型的深水区,数据已成为核心生产要素,而“让数据可用、好用”则是挖掘数据价值的前提。对CDA(Certified Data An ...
2025-12-24数据分析师认证考试全面升级后,除了考试场次和报名时间,小伙伴们最关心的就是报名费了,报 ...
2025-12-23在Power BI数据可视化分析中,矩阵是多维度数据汇总的核心工具,而“动态计算平均值”则是矩阵分析的高频需求——无论是按类别计 ...
2025-12-23在SQL数据分析场景中,“日期转期间”是高频核心需求——无论是按日、周、月、季度还是年度统计数据,都需要将原始的日期/时间字 ...
2025-12-23在数据驱动决策的浪潮中,CDA(Certified Data Analyst)数据分析师的核心价值,早已超越“整理数据、输出报表”的基础层面,转 ...
2025-12-23在使用Excel数据透视表进行数据分析时,我们常需要在透视表旁添加备注列,用于标注数据背景、异常说明、业务解读等关键信息。但 ...
2025-12-22在MySQL数据库的性能优化体系中,索引是提升查询效率的“核心武器”——一个合理的索引能将百万级数据的查询耗时从秒级压缩至毫 ...
2025-12-22