京公网安备 11010802034615号
经营许可证编号:京B2-20210330
Python标准库的学习准备
Python标准库是Python强大的动力所在,我们已经在前文中有所介绍。由于标准库所涉及的应用很广,所以需要学习一定的背景知识。
硬件原理
这一部份需要了解内存,CPU,磁盘存储以及IO的功能和性能,了解计算机工作的流程,了解指令的概念。这些内容基础而重要。
Python标准库的一部份是为了提高系统的性能(比如mmap),所以有必要了解基本的计算机各个组成部分的性能。
操作系统
在了解操作系统时,下面是重点:
1) 操作系统的进程管理,比如什么是UID, PID, daemon
2) 进程之间的信号通信,比如使用kill传递信号的方式
学习进程相关的内容,是为了方便于学习os包,thread包,multiprocessing包,signal包
3) 文件管理,文件的几种类型。
4) 文件读写(IO)接口
5) 文件的权限以及其它的文件信息(meta data)
6) 常用系统命令以及应用,比如ls, mv, rm, mkdir, chmod, zip, tar...,
学习文件相关的内容,,是为了学习os包, shutil包中文件管理相关的部分。学习文件接口对于文本输入输出的理解很重要,也会影响到对于socket包, select包概念的理解。此外,python中的归档(archive)和压缩(compress)功能也和操作系统中的类似。
7)Linux shell,比如说file name matching,对于理解glob包等有帮助。如果你对Linux的正则表达(regular expression)有了解的话,python的正则表达的学习会变得比较容易。学习Linux命令行中的参数传递对于理解python标准库中解析命令行的包也是有用的。
网络
Python的一大应用是在网络方面。但Python和标准库只是提供了接口,并不涉及底层。网络知识可以大大降低学习曲线的陡度。
1)TCP/IP的基础的分层架构。这方面的内容太广博了,所以可以有选择地了解骨干知识。
2) 常用的应用层协议,比如http, 以及邮件相关的协议,特别是它们的工作过程。
3) 根据需要,了解html/css/javascript/jQuery/frame等
如果想利用python建服务器,比如在google app engine上,这些知识是需要的。
算法与数据结构
标准库中定义有一些数据对象的封装。因此,你并不需要重头编写它们。相关数据结构的应用需要一些数据结构的知识,比如队列,树等。
标准库中已经实现了许多算法,比如排序等,可以方便的调用。算法的基础知识可以帮助你做决定。
数据库
Python中内置了sqlite3。如果你只需要一个简单的数据库,可以直接从标准库中调用sqlite3。
当使用Python中数据库相关的包时(比如sqlite3),需要对数据库,特别是关系型数据库,有一个基本了解。
加密和文本编码
Python的加密算法同样基于一些经典加密算法,比如MD5,RSA算法。加密的基本知识将很有帮助。
使用非ASCII编码,比如中文时,文本编码的知识很重要。
总结
Python基本的对象概念和动态类型概念。可以参照快速教程,并尝试阅读更多的资料和源码,来加深对概念的理解。Python标准库学习的难度在于背景知识。一个了解相关背景知识(或者其它语言的库)的程序员,可以在很短的时间内掌握Python基础库。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16