
Python标准库的学习准备
Python标准库是Python强大的动力所在,我们已经在前文中有所介绍。由于标准库所涉及的应用很广,所以需要学习一定的背景知识。
硬件原理
这一部份需要了解内存,CPU,磁盘存储以及IO的功能和性能,了解计算机工作的流程,了解指令的概念。这些内容基础而重要。
Python标准库的一部份是为了提高系统的性能(比如mmap),所以有必要了解基本的计算机各个组成部分的性能。
操作系统
在了解操作系统时,下面是重点:
1) 操作系统的进程管理,比如什么是UID, PID, daemon
2) 进程之间的信号通信,比如使用kill传递信号的方式
学习进程相关的内容,是为了方便于学习os包,thread包,multiprocessing包,signal包
3) 文件管理,文件的几种类型。
4) 文件读写(IO)接口
5) 文件的权限以及其它的文件信息(meta data)
6) 常用系统命令以及应用,比如ls, mv, rm, mkdir, chmod, zip, tar...,
学习文件相关的内容,,是为了学习os包, shutil包中文件管理相关的部分。学习文件接口对于文本输入输出的理解很重要,也会影响到对于socket包, select包概念的理解。此外,python中的归档(archive)和压缩(compress)功能也和操作系统中的类似。
7)Linux shell,比如说file name matching,对于理解glob包等有帮助。如果你对Linux的正则表达(regular expression)有了解的话,python的正则表达的学习会变得比较容易。学习Linux命令行中的参数传递对于理解python标准库中解析命令行的包也是有用的。
网络
Python的一大应用是在网络方面。但Python和标准库只是提供了接口,并不涉及底层。网络知识可以大大降低学习曲线的陡度。
1)TCP/IP的基础的分层架构。这方面的内容太广博了,所以可以有选择地了解骨干知识。
2) 常用的应用层协议,比如http, 以及邮件相关的协议,特别是它们的工作过程。
3) 根据需要,了解html/css/javascript/jQuery/frame等
如果想利用python建服务器,比如在google app engine上,这些知识是需要的。
算法与数据结构
标准库中定义有一些数据对象的封装。因此,你并不需要重头编写它们。相关数据结构的应用需要一些数据结构的知识,比如队列,树等。
标准库中已经实现了许多算法,比如排序等,可以方便的调用。算法的基础知识可以帮助你做决定。
数据库
Python中内置了sqlite3。如果你只需要一个简单的数据库,可以直接从标准库中调用sqlite3。
当使用Python中数据库相关的包时(比如sqlite3),需要对数据库,特别是关系型数据库,有一个基本了解。
加密和文本编码
Python的加密算法同样基于一些经典加密算法,比如MD5,RSA算法。加密的基本知识将很有帮助。
使用非ASCII编码,比如中文时,文本编码的知识很重要。
总结
Python基本的对象概念和动态类型概念。可以参照快速教程,并尝试阅读更多的资料和源码,来加深对概念的理解。Python标准库学习的难度在于背景知识。一个了解相关背景知识(或者其它语言的库)的程序员,可以在很短的时间内掌握Python基础库。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29