京公网安备 11010802034615号
经营许可证编号:京B2-20210330
Python标准库的学习准备
Python标准库是Python强大的动力所在,我们已经在前文中有所介绍。由于标准库所涉及的应用很广,所以需要学习一定的背景知识。
硬件原理
这一部份需要了解内存,CPU,磁盘存储以及IO的功能和性能,了解计算机工作的流程,了解指令的概念。这些内容基础而重要。
Python标准库的一部份是为了提高系统的性能(比如mmap),所以有必要了解基本的计算机各个组成部分的性能。
操作系统
在了解操作系统时,下面是重点:
1) 操作系统的进程管理,比如什么是UID, PID, daemon
2) 进程之间的信号通信,比如使用kill传递信号的方式
学习进程相关的内容,是为了方便于学习os包,thread包,multiprocessing包,signal包
3) 文件管理,文件的几种类型。
4) 文件读写(IO)接口
5) 文件的权限以及其它的文件信息(meta data)
6) 常用系统命令以及应用,比如ls, mv, rm, mkdir, chmod, zip, tar...,
学习文件相关的内容,,是为了学习os包, shutil包中文件管理相关的部分。学习文件接口对于文本输入输出的理解很重要,也会影响到对于socket包, select包概念的理解。此外,python中的归档(archive)和压缩(compress)功能也和操作系统中的类似。
7)Linux shell,比如说file name matching,对于理解glob包等有帮助。如果你对Linux的正则表达(regular expression)有了解的话,python的正则表达的学习会变得比较容易。学习Linux命令行中的参数传递对于理解python标准库中解析命令行的包也是有用的。
网络
Python的一大应用是在网络方面。但Python和标准库只是提供了接口,并不涉及底层。网络知识可以大大降低学习曲线的陡度。
1)TCP/IP的基础的分层架构。这方面的内容太广博了,所以可以有选择地了解骨干知识。
2) 常用的应用层协议,比如http, 以及邮件相关的协议,特别是它们的工作过程。
3) 根据需要,了解html/css/javascript/jQuery/frame等
如果想利用python建服务器,比如在google app engine上,这些知识是需要的。
算法与数据结构
标准库中定义有一些数据对象的封装。因此,你并不需要重头编写它们。相关数据结构的应用需要一些数据结构的知识,比如队列,树等。
标准库中已经实现了许多算法,比如排序等,可以方便的调用。算法的基础知识可以帮助你做决定。
数据库
Python中内置了sqlite3。如果你只需要一个简单的数据库,可以直接从标准库中调用sqlite3。
当使用Python中数据库相关的包时(比如sqlite3),需要对数据库,特别是关系型数据库,有一个基本了解。
加密和文本编码
Python的加密算法同样基于一些经典加密算法,比如MD5,RSA算法。加密的基本知识将很有帮助。
使用非ASCII编码,比如中文时,文本编码的知识很重要。
总结
Python基本的对象概念和动态类型概念。可以参照快速教程,并尝试阅读更多的资料和源码,来加深对概念的理解。Python标准库学习的难度在于背景知识。一个了解相关背景知识(或者其它语言的库)的程序员,可以在很短的时间内掌握Python基础库。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26