京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据和物联网:在制造业、医疗保健和智慧城市的成功应用
近年来,物联网(IOT)和大数据成为人们最受关注的两个主题,也被一些国家确定成为将要大力发展的技术之一。这两个技术的进步往往被视为独立的实体。然而,人们的观点是,物联网实际上是一个大数据子集或是大数据通常使用的情况,这二者是密切相关的。在越来越具有挑战性的市场中,人们见证了许多成功的故事。那些开始步入大数据旅途上的组织都经历了运营效率的提高,现在能够做出更明智的决策,更快使它们在竞争中领先。
为什么物联网能够改变我们的未来?
物联网可以通过互联网连接传感器连接到各种各样的“东西”,并得到了快速增长。简单地说,它是一个连接任何设备的具有“开/关”功能的开关,通过互联网连接到彼此,可以方便地连接“事物”大规模网络的概念。根据分析公司Gartner称,到2020年,全球将有超过260亿个连接设备,尽管这种预测根据来源不同而不同。
物联网和大数据具有改变许多领域活动的潜力,不仅是商业活动,还关系到我们的日常生活。
调查机构IDC2015年对物联网发展的预测指出,“如今,物联网的活动超过50%集中在制造业,交通,智能城市和消费类应用,但在五年内,所有的行业都将会推出采用物联网的举措。”
大数据和分析将革新制造业
生产制造商开始使用大数据和分析,并与物联网相结合以作出决定,20年前,我们对此只能想象。例如,在汽车内连接传感器,并结合大数据和分析来预测,当一辆汽车有可能出故障之前,实际上已经发生。这一过程不仅会通知司机,而且他们的车辆可能在服务之前出故障,这可以支持汽车制造商调查潜在的缺陷,并改进未来的车型。大数据在制造业成功部署的好处包括:
·提高生产效率。采用传感器和数据能够提高效率,减少损失和浪费,并提高员工的工作效率。
·新的收入流。可以产生更多收入的机会,通过制造智能产品。这方面的一个很好的例子是芬兰通力公司起重机,研发创造了“智能”起重机。
·节省运营成本。使用生产车间的传感器,现场管理人员能够通过预测性维护,以减少停机时间。
·保持更强的竞争力。采用大数据和分析运营机构更为精简,提高效率,并在市场中取得竞争优势。
大数据和物联网为居民创造更智能的城市
新的物联网应用利用连接,与大数据和分析一起被用于所谓的“智慧城市”,以改善城市流动性,减少交通拥堵等问题。结合实时数据,并连接汽车强大的分析平台,使城市规划者和当地政府可以了解他们的居民和游客习惯,得出全新的见解和可操作的信息。大数据的有效利用,提高了目前的交通网络,并减少了需要额外的和昂贵的昂贵的基础设施项目的需求。
除了交通道路分析,大数据还支持当局预测未来的项目的影响,以及他们如何影响当地的生态系统,从而帮助做出明智的决定。例如,如果一个规划部门正在考虑采用一个应用在城市内构建一个大型建筑,他们可以超越环境问题,天际线和居民的反馈进行通常的考虑。利用大数据让规划者进行调查,并作出预测,并看待这些因素将如何对当地的交通系统和附近的道路产生影响。
大数据节省医疗保健和生活成本
将会有许多人在医疗保健受益于使用物联网,无论是患者和供应商。虽然物联网已被引入到许多不同的行业,出于人们对数据的隐私和安全的关注,医疗保健行业仍然落后于其他行业。尽管如此,在一些情况下,医院已经开始使用物联网和大数据分析。例如,一些医院推出了“智能床”,当检测到一个床被占用,或当一个病人可能试图离开床面,可以自行调整,并确保减轻人员的压力,并提供支持。新的技术和数据跟踪也可以帮助医疗保健专业人员与病人的互动,可以减轻病人对医生提供现场服务的需要。
目前在英格兰和威尔士,花费在糖尿病的预算,相当于每小时超过150万英镑,或者是25000英镑每分钟。总的来说,每年花在治疗糖尿病及其并发症的治疗费用大约为140亿英镑,而发生并发症代表更高的成本。因此医疗行业将启用大数据分析,以确定糖尿病的早期检测和治疗,发现患者的趋势和行为,这主要是使用连接的设备,在了解更深入的条件下,可以支持更有效的药品分配。
一个由神经系统相互连接的世界
多年来,人们一直着迷使用更小更智能的工具,以及知道他们如何运作,但最近才有可能完全开始了解它,并充分发挥其潜力。。正如马歇尔·麦克卢汉在1964年预测的一样,我们在未来将有“…一个世界相互关联的电子神经系统”。我们生活在一个地球村。大数据和物联网技术将使所有行业相互关联的,并已切断,释放令人难以置信的改变生活的机会。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22