
大数据和物联网:在制造业、医疗保健和智慧城市的成功应用
近年来,物联网(IOT)和大数据成为人们最受关注的两个主题,也被一些国家确定成为将要大力发展的技术之一。这两个技术的进步往往被视为独立的实体。然而,人们的观点是,物联网实际上是一个大数据子集或是大数据通常使用的情况,这二者是密切相关的。在越来越具有挑战性的市场中,人们见证了许多成功的故事。那些开始步入大数据旅途上的组织都经历了运营效率的提高,现在能够做出更明智的决策,更快使它们在竞争中领先。
为什么物联网能够改变我们的未来?
物联网可以通过互联网连接传感器连接到各种各样的“东西”,并得到了快速增长。简单地说,它是一个连接任何设备的具有“开/关”功能的开关,通过互联网连接到彼此,可以方便地连接“事物”大规模网络的概念。根据分析公司Gartner称,到2020年,全球将有超过260亿个连接设备,尽管这种预测根据来源不同而不同。
物联网和大数据具有改变许多领域活动的潜力,不仅是商业活动,还关系到我们的日常生活。
调查机构IDC2015年对物联网发展的预测指出,“如今,物联网的活动超过50%集中在制造业,交通,智能城市和消费类应用,但在五年内,所有的行业都将会推出采用物联网的举措。”
大数据和分析将革新制造业
生产制造商开始使用大数据和分析,并与物联网相结合以作出决定,20年前,我们对此只能想象。例如,在汽车内连接传感器,并结合大数据和分析来预测,当一辆汽车有可能出故障之前,实际上已经发生。这一过程不仅会通知司机,而且他们的车辆可能在服务之前出故障,这可以支持汽车制造商调查潜在的缺陷,并改进未来的车型。大数据在制造业成功部署的好处包括:
·提高生产效率。采用传感器和数据能够提高效率,减少损失和浪费,并提高员工的工作效率。
·新的收入流。可以产生更多收入的机会,通过制造智能产品。这方面的一个很好的例子是芬兰通力公司起重机,研发创造了“智能”起重机。
·节省运营成本。使用生产车间的传感器,现场管理人员能够通过预测性维护,以减少停机时间。
·保持更强的竞争力。采用大数据和分析运营机构更为精简,提高效率,并在市场中取得竞争优势。
大数据和物联网为居民创造更智能的城市
新的物联网应用利用连接,与大数据和分析一起被用于所谓的“智慧城市”,以改善城市流动性,减少交通拥堵等问题。结合实时数据,并连接汽车强大的分析平台,使城市规划者和当地政府可以了解他们的居民和游客习惯,得出全新的见解和可操作的信息。大数据的有效利用,提高了目前的交通网络,并减少了需要额外的和昂贵的昂贵的基础设施项目的需求。
除了交通道路分析,大数据还支持当局预测未来的项目的影响,以及他们如何影响当地的生态系统,从而帮助做出明智的决定。例如,如果一个规划部门正在考虑采用一个应用在城市内构建一个大型建筑,他们可以超越环境问题,天际线和居民的反馈进行通常的考虑。利用大数据让规划者进行调查,并作出预测,并看待这些因素将如何对当地的交通系统和附近的道路产生影响。
大数据节省医疗保健和生活成本
将会有许多人在医疗保健受益于使用物联网,无论是患者和供应商。虽然物联网已被引入到许多不同的行业,出于人们对数据的隐私和安全的关注,医疗保健行业仍然落后于其他行业。尽管如此,在一些情况下,医院已经开始使用物联网和大数据分析。例如,一些医院推出了“智能床”,当检测到一个床被占用,或当一个病人可能试图离开床面,可以自行调整,并确保减轻人员的压力,并提供支持。新的技术和数据跟踪也可以帮助医疗保健专业人员与病人的互动,可以减轻病人对医生提供现场服务的需要。
目前在英格兰和威尔士,花费在糖尿病的预算,相当于每小时超过150万英镑,或者是25000英镑每分钟。总的来说,每年花在治疗糖尿病及其并发症的治疗费用大约为140亿英镑,而发生并发症代表更高的成本。因此医疗行业将启用大数据分析,以确定糖尿病的早期检测和治疗,发现患者的趋势和行为,这主要是使用连接的设备,在了解更深入的条件下,可以支持更有效的药品分配。
一个由神经系统相互连接的世界
多年来,人们一直着迷使用更小更智能的工具,以及知道他们如何运作,但最近才有可能完全开始了解它,并充分发挥其潜力。。正如马歇尔·麦克卢汉在1964年预测的一样,我们在未来将有“…一个世界相互关联的电子神经系统”。我们生活在一个地球村。大数据和物联网技术将使所有行业相互关联的,并已切断,释放令人难以置信的改变生活的机会。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01