京公网安备 11010802034615号
经营许可证编号:京B2-20210330
R语言-基本数据管理合作
在开始数据分析之前,我们有必要按照自身对数据的需求,对数据管理。数据管理是数据分析工作的前提,只有保障数据合理、可靠、有效的获取,才能使得后续对数据的处理工作顺利开展。以下我们简单介绍一下,两种常见的数据管理方法:变量新建与重新编码,数据集的排序与合并。
1. 创建新变量
可以通过以下形式的语句,创建新变量。
变量名<-表达式
myddata<-data.frame(x1=c(2,2,6,4),x2=c(3,4,2,8))
mydata$sumx<-mydata$x1+mydata$x2
mydata$mean<-(mydata$x1+mydata$x2)/2
2. 变量的重新编码
将leadership中年龄55-75岁之间的定义为“中年人”,大于75岁的定义为“老年人”,小于55岁定义为“青年”。
leadership<-within(leadership,{
agecat<-NA
agecat[age>75]<-"Elder"
agecat[age>=55 & age <=75]<-"Middle Aged"
agecat[age<55]<-"Young"
})
3. 变量的重命名
将leadership中第6-10列的变量名称分别重命名为item1-5.
names(leadership)[6:10]<-c("item1","item2","item3","item4","item5")
也可以通过以下形式的语句,进行重命名。
rename(dataframe,c(oldname=“newname”,oldname=“newname”,..))
4. 数据排序
将leadership各行按照女性到男性,同样性别按照年龄降序排序。
attach(leadership)
newdata<-leadership[order(gender,-age),]
dettach(leadership)
5. 数据集的合并
5.1 横向合并
多数情况下,我们需要对两个数据框进行合并,具体通过一个或者多个共有变量进行联结(即一种内联结),以下为形式语句:
total1<-merge (dataframeA,dataframeB,by="ID")
譬如:我们将学生成绩表与学校基本信息表进行合并,可以编写如下语句。
total<-merge (Studentgrade,Student,by="name")
5.2 纵向合并
此外,我们有时需要对数据纵向合并,增加样本观测值。
total2<-rbind (dataframeA,dataframeB)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22