京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据将赋能时尚行业新零售
新零售已经成为如今消费领域的热词。如何定义新零售?笔者认为,新零售是以消费者体验为中心的数据驱动的泛零售形态。
新零售的特征包括:数据技术发展可以无限逼近消费者内心需求,掌握数据就是掌握消费者需求;借助数字技术,物流业、大文娱等多元业态延伸出多元的零售形态;任何零售主体,消费者和商品既是物理的也是数字化的,企业内部和企业间流通的损耗最终可达到无限逼近“零”的理想状态。
如今,人们的一举一动都会留下数据痕迹。大数据是一种包罗万象且规模庞大的数据集合,具有海量的数据规模、快速的数据流转、多样的数据类型和价值密度低四大特征。大数据的价值在于对数据的“加工能力”,通过“加工”实现数据的“增值”。数据技术发展可以无限逼近消费者内心需求,掌握数据就是掌握消费者需求,因此,企业需要更加精准的数据以洞察不同消费者需求。
如今,国民经济快速发展,人民生活水平提高,各方面消费力量兴起;用户更加注重商品品质,选择符合自身需要和消费特征的商品;商业回归产品与服务的本质,产生出更符合细分消费需求的商品和服务。
在这些宏观经济背景下,消费用户逐渐趋于细分,“泛90后”和女性,已经成为时尚产业两大主要目标客群,具有高学历、高信心、高收入、高频次、易种草、更细分等六大特征。以“泛90后”为例,泛90后人群有着和其他年龄层消费者完全不一样的面相。他们成长于物质已经比较充裕的年代,习惯于用互联网获取大量信息;他们是一群smart shopper,相比价格,他们更关注商品品质、服务体验和品牌个性等方面。
同时,针对女性消费的研究表明,女性消费者特别是年轻女性消费者的消费呈现比较高的消费频次,女性消费者已经非常习惯于社交型的电商形态,在社交的过程中吸取别人的购物建议,获取新的购物信息并在内心“种草”。而大量专门针对女性设计的产品崭露头角的背景则是女性细分化市场迎来非常好的发展。
未来用户的购物需求和购物场景,将会出现‘时空、信息、需求、渠道、生产’这五个‘碎片化’。因此也出现了社交电商、物联网、闪购等多元化的购物形式。基于时尚消费者的变化,未来时尚零售将出现场景化、数据化、个性化、社交化等四大趋势。
移动互联网时代,市场开始由传统价格导向转为场景导向,随着移动购物模式的多样化,与场景相关的应用将成为驱动消费者迁移的新增长点;随着对大数据的深度挖掘,对于用户风格喜好,款式,颜色,设计细节等的决策越来越多地被数据指导,对于用户的千人千面个性化推荐也将越发成熟;消费需求个性化在电商发展中快速演变,升级,适应用户的转变并期待引领用户消费观,一批垂直电商兴起,围绕人群深耕;在网红风靡、内容电商兴起及大数据的冲击与推动下,社交和电商不断融合发展,电商行业已逐渐向基于社会化发展。
新时尚电商例如美丽联合集团,就正在努力尝试借助大数据和新零售形式,帮助服装行业供给侧解决一直以来令人困扰的款式预测和库存问题。通过大数据分析,我们将可以得出更加准确的款式预测,并基于大数据进行款式判断算法,经过流通环节的测款等方法做到最大程度的精准库存预测,从而做到“零库存”。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22