京公网安备 11010802034615号
经营许可证编号:京B2-20210330
SAS—计算K-S值及画图
近来,时于夜半下雨,也常在梦里被雨扰醒。究其原因,也是因为近来工作无趣,本身也只喜欢写写SAS或Python代码,做模型,可近来却连数据权限都没有,万灰俱灭。雨声轻轻,却也容易愁闷得睡不着。想着要去外包,却因自己的犹豫不决也没有去成。
好了,不说废话了。昨天有人在微信上问KS的计算方式。今天介绍一下KS值吧。
先看一段程序:
data logistic;
input accident age vision drive;
datalines;
1 17 1 1
1 44 0 0
1 48 1 0
1 55 0 0
1 75 1 1
0 35 0 1
0 42 1 1
0 57 0 0
0 28 0 1
0 20 0 1
0 38 1 0
0 45 0 1
0 47 1 1
0 52 0 0
0 55 0 1
1 68 1 0
1 18 1 0
1 68 0 0
1 48 1 1
1 17 0 0
1 70 1 1
1 72 1 0
1 35 0 1
1 19 1 0
1 62 1 0
0 39 1 1
0 40 1 1
0 55 0 0
0 68 0 1
0 25 1 0
0 17 0 0
0 45 0 1
0 44 0 1
0 67 0 0
0 55 0 1
1 61 1 0
1 19 1 0
1 69 0 0
1 23 1 1
1 19 0 0
1 72 1 1
1 74 1 0
1 31 0 1
1 16 1 0
1 61 1 0
;
proc logistic data=logistic outest=model;
model accident(event='1')=age vision drive/selection=stepwise
sle=0.05 sls=0.05 outroc=roc;
output out= pred p=p1 ;
run;
proc npar1way data=pred noprint;
class accident;
var p1;
output out=ks;
run;
以上是一段常规的计算KS值。
首先要了解什么是KS值,K-S值(kolmogorov-smirnov curve)将总体进行n等分组并按照违约概率降序排列,计算每一等份中违约与正常百分比的累积分布,绘制出两者之间的差值就是K-S曲线。其中K-S曲线中的最大值即为K-S统计量,取值范围在0到1之间。
以下是计算K-S值及画图的宏程序:
/**data:逻辑回归后包含验证结果的数据集,var:违约概率变量,status:分类变量,data1:切分后的变量,Mks:最大ks值,M:分组组数**/
%macro KS(data, var, status, data1, Mks,M);
proc sort data=&data;
by &var;
run;
proc sql noprint;
select sum(&status) into:P from &data;
select count(*) into :Ntot from &data;
quit;
%let N=%eval(&Ntot-&P);
data &data1;
set &data nobs=NN;
by &var;
retain tile 1 totP 0 totN 0;
Tile_size=ceil(NN/&M);
if &status=1 then totP=totP+&status;
else totN=totN+1;
Pper=totP/&P;
Nper=totN/&N;
if _N_ = Tile*Tile_Size then
do;
output;
if Tile <&M then
do;
Tile=Tile+1;
SumResp=0;
end;
end;
keep Tile Pper Nper;
run;
data temp;
Tile=0;
Pper=0;
NPer=0;
run;
Data &data1;
set temp &data1;
run;
data &data1;
set &data1;
Tile=Tile/&M;
label Pper='Percent of Positives';
label NPer ='Percent of Negatives';
label Tile ='Percent of population';
KS=NPer-PPer;
run;
proc sql noprint;
select max(KS) into :&Mks from &data1;
run; quit;
proc datasets library=work nodetails nolist;
delete temp ;
run;
quit;
%mend;
%macro PlotKS(data1);
symbol1 value=dot color=red interpol=join height=1;
legend1 position=top;
symbol2 value=dot color=blue interpol=join height=1;
symbol3 value=dot color=green interpol=join height=1;
proc gplot data=&data1;
plot( NPer PPer KS)*Tile / overlay legend=legend1;
run;
quit;
goptions reset=all;
%mend;
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01