京公网安备 11010802034615号
经营许可证编号:京B2-20210330
SPSS统计基础---描述功能的使用
“描述”过程为单个表中的若干变量显示单变量摘要统计量,并计算标准化值(z 得分)。变量可以按其均值(升序或降序)大小、按字母顺序或按您选择变量的顺序(缺省值)进行排序。
当z 得分被保存时,它们将被添加到数据编辑器的数据中并可为图表、数据列表和分析所用。如果变量以不同的单位(例如,人均国内生产总值和受教育人口百分比)记录的,z 得分转换会将变量置于更易于直观比较的常用标度中。
示例。如果您的数据中每个个案都包含数月中每天采集的每个销售人员的日销售总额(例如,Bob、Kim、Brian 各有一个条目),则“描述”过程可以计算每个职员的平均日销售额,并从高到低排列结果。
统计量。样本大小、均值、最小值、最大值、标准差、方差、范围、合计、均值,标准误、峰度和偏度及两者的标准误。
数据。以图形方式显示数值变量中的记录错误、离群值和分布异常之后使用这些数值变量。“描述”过程对大文件(数千个案)特别有效。
假设。大多数可用统计量(包括z 得分)都基于正态理论,并适合于对称分布的定量变量(定距或者定比测量级别)。避免类别未排序或偏斜分布的变量。z 得分的分布与原数据具有相同的形状,因此,计算z 得分并不是排除问题数据的方法。
获取描述统计
E 从菜单中选择:
分析> 描述统计> 描述...
选择一个或多个变量。
根据需要,您可以:
选择将标准化得分另存为变量以将z 得分保存为新变量。
单击选项选择可选统计量和显示顺序。
描述:选项
均值与总和。默认情况下显示均值(或算术平均数)。
离散程度。测量数据中的分布或变动的统计量包括标准差、方差、范围、最小值、最大值和均值标准误。
标准差(T). 对围绕均值的离差的测量。在正态分布中,68% 的个案在均值的一倍标准差范围内,95% 的个案在均值的两倍标准差范围内。例如,在正态分布中,如果平均年龄为45,标准差为10,则95% 的个案将处于25 到65 之间。
方差. 对围绕均值的离差的测量,值等于与均值的差的平方和除以个案数减一。度量方差的单位是变量本身的单位的平方。
全距. 数值变量最大值和最小值之间的差;最大值减去最小值。
最小值. 数值变量的最小值。
最大值. 数值变量的最大值。
均值的标准误(E). 取自同一分布的样本与样本之间的均值之差的测量。它可以用来粗略地将观察到的均值与假设值进行比较(即,如果差与标准误的比值小于-2 或大于+2,则可以断定两个值不同)。
分布。峰度和偏度是描绘分布形状和对称情况的统计量。这些统计量与其标准误一起显示。
峰度. 观察值聚集在中点周围的程度的测量。对于正态分布,峰度统计量的值为
0。正峰度值表示相对于正态分布,观察值在分布中心的聚集更多,同时尾部更薄,直到分布极值。在这一点,leptokurtic 分布的尾部比正态分布的尾部要厚。负峰度值表示相对于正态分布,观察值聚集得少并且尾部较厚,直到分布极值。在这一点,platykurtic 分布的尾部比正态分布的尾部要薄。数据分析师培训
偏度. 分布的不对称性度量。正态分布是对称的,偏度值为0。具有显著正偏度值的分布有很长的右尾。具有显著的负偏度的分布有很长的左尾。作为一个指导,当偏度值超过标准误的两倍时,则认为不具有对称性。
显示顺序。默认情况下,将按您选择变量的顺序显示变量。(可选)您可以按字母顺序升序或降序显示变量。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22