京公网安备 11010802034615号
经营许可证编号:京B2-20210330
对于大数据,这些认识上的bug你必须要知道
虽然大数据的发展(包括新型的非结构化数据和数据分析工具)正影响着各行各业,但关于大数据也有一些误解。
误解一:算法能解决一切问题请输入标题
我把这个误解称为神奇的算法。有关大数据的早期报道造成了一种假象:要想打造智能城市和企业,只要将功能最强大的电脑凑在一起,让它们去分析手头上的非结构化数据,找出规律,其中的商业洞见自然会浮现出来。但事实上,数据分析并不是这样完成的。
除了机器的运算,要使大数据发生效用还需要许多人力专家的参与,这是因为:数据的质量和准确性相当重要。数据是怎样收集的?误差率如何?样本是否有代表性?如果进行比对,不同的数据库中数据格式是否相同?因此,数据处理中的许多工作还需要人工操作,其中的尺度计算机很难拿捏。
受编程人员的主观影响,数据分析的算法也会出现各种偏差。比如,某个程序可以帮助企业筛选出最佳应聘者的简历,但是基于过去招聘经历的筛选结果并不一定能满足公司未来所需要的技能。
更重要的是,管理者需要提出关于数据的对的问题。公司现阶段最关心的结果是什么?数据呈现的哪些模式可以直接为公司所用?算法在寻找答案方面越来越游刃有余,但关键还要知道寻找什么问题的答案,这需要人来提出恰当的问题。凯撒娱乐的首席商务官塔里克·肖卡特曾这样说:“如果仅关注数据,那你可能将一无所获。我总是提醒我的团队去思考,你想要回答什么问题。”
误解二:相关分析至上
发现一种模式往往是不够的。许多评论家一再指出,有了大数据,数据科学再也不需要考虑因果关系,只关注相关关系即可。这种观点的潜在逻辑在于,通过大数据分析得到的规律近乎事实,无须再依赖人们所认知的因果判断。
显然这种观点是不可取的。管理者需要分清简单的相关分析和因果分析之间的差异,以及这种差异什么时候重要,什么时候不重要,这一点非常关键。简而言之,如果仅仅是为了做预测,看数据之间的相关关系便已足够;但如果你想改变前提条件,就必须考虑因果关系。
回到斯特林格的例子——就是发现降低城市树木修剪预算会引发诉讼数量增加的那个检察官。如果树木修剪预算不是引发诉讼数量变化的真正原因,那么提高树木修剪预算的方案就不会奏效。在这个例子里,搞清因果关系是很重要的。
还有一个例子,试想你的广告策划团队发现,俄亥俄州的已婚女性对你们的头发护理产品广告更感兴趣,但是你显然不能通过鼓励俄亥俄州的女性结婚来增加产品销量(这将影响前提条件)。相反,发现这一规律后,你可能会考虑将产品定位于俄亥俄州的已婚女性群体。在这种情形下,仅需要知道相关关系就可以了。
误解三:大数据是万金油
有时候人们将大数据与数据战略混为一谈。在很多情况下,企业完全可以建立宝贵的数据库,将之应用到战略中,而不一定非要使用大数据。
数据并不一定非要“大”(非结构化)才有用。从结构化的数据中(如顾客的点击行为——顾客一般会点击网页的什么位置、什么时候下拉屏幕、停留了多长时间、是否将商品放入购物车等)照样可以得到许多有价值的信息。即使在像脸书这样为许多世界大型服务器集群提供大数据的企业,其工程师每天处理的大多数问题也可以在一台运转良好的电脑上完成。数据战略的关键在于为企业提供价值,有时候需要大数据,有时候并不需要。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27