
数据的误区及自身业务
现在做移动互联网,无论是做社交的也好,做内容向的也好,他就是不跟别人说我们是用数据来分析用户的行为,以此迅速占领用户。不这样说他都不好意思。都说大数据,在做大数据以前,我们有一些基本的误区要跟大家先说明一下。
什么意思呢,会有两种很有奇怪的观点:
1. 什么都要靠数据去支撑。比如我们把按钮从左边换到右边,从红色换成黄色。这个东西一定要有什么数据分析团队、数据分析师、产品经理在哪儿反复打磨。最后跟我们说一句,按钮从以前的100像素换到了105像素。这是很无聊的一件事情,但是这个要用数据去验证,你知道吗?
2. 秉承数据无用论。就是说,数据有什么用呢?还不如我经验来的有用。
这两种观点,基本上都是错的。
数据量多真的有用吗?
数据量多不一定有用。这是我在上一家公司做了三年以后得出的一个非常沉痛的教训。数据太多并没有什么卵用,数据要有用,他一定要有关联、有联系。不然,白存着那些每天几十个G的那些数据,导又导不出来,联系又没法联系,形成一个个,我称之为孤岛数据(z这样的东西)。并没有什么用的。
孤岛数据只能读出来片面的现象,他连一个结论都读不出来,所以你的技术团队高兴怎么做就怎么做。要以结果为导向,以目标为出发。他跟技术其实没有太多的关系。你的用户量很少,数据不多,他没关系的。后面我会给大家举一些比较有意思的例子。
在线调查
还有一种是这样,这个是在公司里,市场运营还有数据运营,他们经常使用的一种手法,叫做在线调查。我们假模假样的做一个东西,我们新版发布了,我们想收集一下用户的需求。
咱们的产品团队里面一般会有一个产品助理,去出一个在线问卷调查,大概有一百个问题。完了,产品经理说,一百个太多了,我们五十个。上报到总监,总监说五十个太多了,三十个。上报到老板那里,老板说,三十个也太多了,十个吧。
然后假模假样的出了一份十个问题的问卷调查,说我们收集到了一万分的用户调查报告,我给你做成曲线图、饼图、折叠图。这些东西还好我没有做过,都是别人做。
这些东西有用吗?我明确告诉大家,这个东西没有用。现在没用,以后也没用,以后就不要做了。
为什么呢?是这样的,首先问卷调查,他是一个很古老的行业。她有一个非常严谨的一些方法。问卷调查最有用的地方,是在前期把用户筛选掉。这是问卷调查最有用的地方。比如说我可以Push到五万个人,问卷调查是把五万个人里面四万九千五百个人删掉他,取消掉他。我只要那五百个非常有用,非常精准,非常符合我的目标用户的那五百个人就够了。
所以不是说越多越好,那都是一些垃圾数据。你从一开始,对用户没有过滤,你这个问卷调查就是垃圾。而且,这种情况下,你还把你本来想问的那一百个问题,给压缩成了十个问题。这十个问题还没有什么质量。新版本你喜不喜欢,A喜欢,B不喜欢。这问题你问他干嘛呢?
知识误区:
还有一个,我称之为知识误区。我们但凡有一点机会,都会去接触一些海量的数据。通过各种各样的途径,通过一些统计学的方法,包括归纳、总结、折线图、饼图、曲线图。就是说,这些东西有用吗?有用的,起辅助作用。前提是所谓用到的简单或者复杂的数据方法。
你要正确的认知,举个例子。
大家都知道平均数吧,平均数有多少种?有算数平均数,有几何平均数。他们有什么用?在什么场合下用什么样的平均数,去做一个对我们整个的格局、整个的用户群的一个调查?你并不知道。第二个,平均数最大的问题就是,我有101个用户,这100个用户身高只有1米,有一个用户身高有100米。你说我们平均出来的这个平均数有用吗?半毛钱卵用没有。所以这个就是平均数最大的问题所在。
所以什么意思呢?我们大家使用数学方法一定要知道这个方法,适用于什么场合,会有什么限制。当然了忽悠老板除外,忽悠老板什么方法都是可以的。
统计相关性:
还有一个问题是,统计相关性。这个问题是,统计学一直没有解决的问题。就是统计学试图用统计相关性,来把真实的相关性给取消掉。什么意思?我举个例子,比如今天有六十个人,来听我的吹牛逼。然后外面天空是放晴的。我们做市场调查,在此时此刻,全中国一共有两千场,大概六十个人参加的,有一个工作十年左右的人在这边吹牛逼,天空是放晴的。什么叫统计相关性?即,以后中国大陆有两千场左右,下午三点多的,六十个人左右的,这样一个吹牛逼活动,天空一定是放晴的。你认为这合理吗?胡说八道对吧?
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28