京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代 业务运维驱动下的企业变革
从信息化时代起,企业一直在试图发现业务数据中深藏的商业价值,并为此诞生了数据挖掘、商业智能、BPM、BSM等诸多技术,然而互联网时代的到来,专为封闭生产环境而生的信息化系统,已经无法满足企业高速增长的互联网开放业务和随着而来的海量信息的处理需求。互联网+最大的价值在于“连接”,企业根据原有生产、经营模式构建起来的IT系统,显然无法满足互联网用户的连接和需求,互联网+转型的难点也正在与此。如何在企业现有IT架构的基础上,快速实现前端互联网用户与后端业务系统的有效连接,构建起全新的、基于大数据分析的业务生态系统呢?
传统企业在进行互联网+转型的过程中,用户将通过网站、APP与企业内部IT系统进行连接。以金融和零售领域的典型业务场景为例,过去消费者要到门店通过营业人员完成交易,而现在只需要在手机上进行简单操作就可以搞定一切。随之而来的是业务的交付不断向互联网迁移,同时用户体验随着业务系统的转移而前置,用户对企业服务的感受不再由前台业务人员决定,而是由产品使用过程中的应用体验决定,IT运维部门成为互联网经济中最能准确感知用户体验的部门,运维与业务的结合成为确保企业进行互联网+成功转型的支撑点。
如今,虚拟化、容器、Serverless、SDN等技术的应用和第三方SaaS服务的普及,让曾经大量牵扯IT部门精力的基础架构运维,逐渐被敏捷、高效的自动化运维所取代,越来越多的运维人员被释放出来,有充足的时间和精力去关注业务。技术运维部门的工作重心和工作方式随之发生变化,由过去专注于IT基础资源、网络质量运行指标监控,向关注业务指标和用户体验转变;故障的发现和解决也由被动巡查基础设施和网络问题来解决系统故障,转变为基于业务数据的风险评估分析,主动发现业务系统性能瓶颈,提前进行资源扩容规划,而这些变化都在促使IT部门从成本中心转变为企业的价值中心。
业务运维体系的建立是以企业现有业务系统为基础,需要IT部门从业务系统、IT支撑和业务管理三个维度对业务进行有效梳理。业务系统维度涵盖ERP系统、交易系统、订单系统、支付系统、物流系统、供应链系统等业务数据源;业务支撑维度则覆盖计算、存储等IT基础设施和网络、应用端的性能数据;业务管理维度则是从企业管理的视角,对业务流程、业务结果、业务效率和业务评价数据进行整合,而这三个业务维度共同组成满足企业发展需求的业务运维三维立体模型。
云智慧在构建基于大数据的业务运维解决方案时采用自下而上的方法,以业务系统、交易系统、订单系统、财务系统、物流系统、客户系统、监控系统为基础,通过大数据处理平台对来自底层的原始数据进行采集、存储、处理和趋势预测分析,最后通过数据可视化工具把分析结果以报表和趋势图的方式展现出来。
而要准确定位和分析因性能不佳对业务造成的不良影响,则需要以用户视角自上而下对业务流程的性能进行透视分析,首先通过应用监控对前端用户体验(包括用户来源、用户行为、用户感受、用户去向等)进行准确感知,然后结合业务拓扑、容量规划、交易分析和问题分析等方法确认受影响的业务环节和结果,最后通过应用性能产品对应用层和基础设施层性能瓶颈的准确定位和预警。
业务运维是IT运维与企业业务深度融合的产物,是运维管理在互联网+时代和云计算、大数据技术推动下的必然结果。云智慧面向产品全生命周期构建起以用户体验为核心,以业务价值为导向的业务运维支撑平台,运用业务运维监控指标和业务运维考评规范等科学方法论为指导对业务运维数据进行分层获取,整合用户投诉反馈、基于用户的业务质量监控数据,对业务影响和问题进行分析,得到SLA管理与绩效考评结果,并通过业务运维可视化工具呈现出来,最终实现应用性能的持续提升和业务健康高速增长。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22