京公网安备 11010802034615号
经营许可证编号:京B2-20210330
活用大数据,创造应用价值
大数据(BigData)近年来已成为业界最炙手可热的话题之一,在大数据时代,企业不仅需要提升储存容量与数据管理能力,更重要的是,要设法从庞大、多元格式的数据海洋中,挖掘出数据的极致价值,进而创造新的商业机会与营运决策。
国立台北商业技术学院教授邹庆士指出,大数据是个大议题,大家其实都还在学习阶段,但可以确定的是,对电脑而言,最有价值的东西已经不再是硬体,而是数据,许多产品及应用也都是以数据为基础,才能进一步产生重大价值。
邹庆士指出,大数据的主要应用,仍是以数据探勘为主,但跟过去相比,特点在于数据量变得非常大,但大数据不见得数大就是美,容量大小还可以靠技术来解决,整理的时间则因为变得非常长,已经成为数据分析的困扰。邹庆士认为,唯有从数据分析的本质开始思考,才能真正深入大数据这个议题。
邹庆士甚至认为,就像Web 1.0是建立网站,Web 2.0则是经营网站,现在的大数据应用,应该要进入「大数据2.0」的时代。在「大数据1.0」的时代,数据是靠IT科技来建立,后来则是透过统计领域或机器学习模式,来建立模式,但现在需要的是达到视觉化及诠释数据的能力。邹庆士认为,在大数据1.0,需要的是掌握新技术与系统,但在大数据2.0,需要培育新型数据分析人才。
若从数据探勘角度来思考,为了要让大数据发挥价值,以数据为基础来做决策,首先要注意的是,数据探勘是一个跨领域的科学,涉及统计、AI、MachineLearning等,必须将来自于不同领域的数据收集起来后,才能整合调理得出结论。
邹庆士将跨产业的数据探勘过程,简化成三个步骤,分别是数据预先处理、数据探勘及后处理,其中又以第一个阶段花最多的时间,邹庆士表示,前置处理非常重要,才不会在后面产生问题,导致「垃圾进、垃圾出」的数据输出结果。
至于第二阶段的主要工作,分别是预测(Predictive)、群集(Cluster)、关联、异常等管理为主。但回到数据分析的根本,邹庆士认为,第一步要先做到数据有感,才知道该怎么对待数据;第二步是数据混搭,要懂很多不同的模式,知道每一个模式建模的特性,最后才能落实想法,先后完成模型混搭及雏型化工具,再一步步放大,但一定要建立在商业理解上。
邹庆士还将大数据的属性分成四类,第一类是名目尺度(nominal),如身分证号码、眼色、邮递区号,特征是仅能比较异同;第二类是顺序尺度(ordinal),如排名、年级、高度等,特称是能够分别顺讯;第三类是区间指度(interval),如日期、温度等,特征为有绝对零点,差异或距离都有其意义;第四类为比例尺度(ratio),如长度、时间、次数等,特征为有自然零点,比率有其意义。
邹庆士强调,每一类的处理方式都不同,运算的方式也因此会有适用的领域,不能随便乱用。数据集类型则分为三种,分别是记录数据(如数据矩阵、文件或交易数据)、图形数据(如全球资讯网或分子结构)及有序数据(如时间、次序、间或基因序列数据等),邹庆士指出,大数据时代要面对的数据不只一种,而是多元的数据来源。
大数据时代的数据来源,其实是充斥在每个领域,包括推文串流、网页伺服器记录等。邹庆士指出,其实重点不在找数据,而是如何混搭各方来源数据,进行混模加值。
因此,邹庆士建议,面对大数据时代,企业要练就数据柔术(DataJiujtsu),好的数据人才,不能只是懂科技,而是要涉猎许多领域,才有办法将大问题分解成小问题,不用立即处理海量数据,做到小处着眼,反覆加值,以机敏弹性的流程,逐步迈向目标。
邹庆士指出,R工具的出现,就是要因应前述的需求,目前已有5,000多个套件,而且支持开放源,所有的演算逻辑都是公开的,可以藉此了解其他工程师的思维。
但在使用工具解决大数据的问题时,邹庆士认为要注意三个议题,分别是撰写有效率的程式,提高执行速度;将数据储存在外部,以避免记忆体受限的问题;运用专门的统计程序,以有效率的方式分析大量数据。
但不管是什么工具,都会一直不断地在演化,邹庆士指出,要特别注意工具的发展,工作才会有效率。此外,大数据分析要能伸缩自如,可大可小,数据分析的思维,一定要回到数据本身的属性,如纷丝团经营指标最佳权重,数据栏位超过90个,所以在开始进行大数据分析时,第一个步骤反而是删除不必要的栏位。
邹庆士指出,活化大数据应用价值的关键,主要是加强个人与组织的数据分析思考能力,唯有将数据、程式及人的智慧加以整合,才会产生价值。企业还必须要能活化顾客留下的数据轨迹,因为价值的关键在于应用。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15