
我们正处于决策成本产生巨变的爆发点,过去那些想尽办法都无法获取的数据,在今天唾手可得,而当有些表面上完全不相关的行业数据关联起来时,居然产生了新的商业价值。更重要的是,过去,我们更多地是带着问题去寻找能够验证自己观点的数据,而今天我们却可以使用数据去预测可能出现的问题。海量数据可以使人的智慧得到更大的发挥,并变得更加规模化。大数据的本质是人,数据研究的极点就是莫测的人性。我们一旦掌控了数据之后的数据,就会拥有制胜未来商业的无敌利器。
假定数据是脏的
在处理数据的时候,会像污水处理厂一样,每一步都问自己要如何处理这些污水。这种情况的出现,到底是因为数据源脏了,还是因为数据提炼过程做得不好?
美国有一家初创公司,专注于与地理位置相关的数据收集、整理和查询服务。它将地理位置的相关指标,按照酒店和旅馆等属性划分为不同细类,对外提供基于位置信息的实时查询,为包括美国最大点评网 Yelp在内的多个知名应用提供底层数据服务。
这家公司最令人印象深刻的是,它对于所收集来的数据会提供一个数据质量评分,以反映数据的可信度和质量水平。它会对这些数据的源头以及对处理数据阶段所用的算法进行评分。也就是说,这家公司在提炼数据的每一个阶段都进行了数据化管理。
这家公司的做法让我们看到了一个趋势,也是一个非常重要的趋势。因为它首先已经接受了数据源肯定是脏的和数据源一定会被污染的事实。所以,它在处理数据的时候,会像污水处理厂一样,每一步都问自己要如何处理这些污水。这种情况的出现,到底是因为数据源脏了,还是因为数据提炼过程做得不好?这个过程我们一定要区分,而且这样的区分是可取的。这家公司是假定数据是“脏”的来做数据管理,而不是假定数据是稳定的。而且,假定数据是“脏”的来处理数据,在大数据时代将是一个非常重要的趋势。
事实上,我们今天在处理的大数据,依然只是冰山一角,而更大的数据都隐藏在我们的语言中,比如我们说的话和写的字。所以,将来我们要准确地从互动中抓取数据,也一定要依赖对自然语言的处理。现在,美国的很多数据研究人员都在瞄准非结构性数据,即语言处理这一领域。
学会慢慢淡化数据
数据是有优先值的,在数据中有些是特别核心的,有些即使缺失了也没有多大问题。所以,我们要学会真正坐下来盘点那些对公司最有价值、对用户最有价值的数据。
想要确定数据的优先值,就要先解决以下几个问题。一是数据的标准化。在大数据时代,我们需要一个标准化的东西供我们进行交流。二是我们到底如何对接和交换数据,如何在交换的时候保持数据的稳定性。比如自然语言,比如在无线和 PC不同场景下受到的影响,这些情况都会滋生出许多新问题。
第三个重要的问题是数据的存储,这将涉及数据的时效性这一问题。有人曾经提出过一个很有价值的观点,即现实中,网站最大的场景变化就是网站改版。因为重新设计网站,本身就影响数据,比如公司的详情页和首页,任何改变都在影响数据。如果在 1~3年后,你才说得出数据的这一改变是由于促销、用户行为或是改版引起的,那这一数据就已经没有任何价值了,这就是数据的时效性。
所以,美国出现了一个概念叫数据淡化( Data Decay),意思很明显,数据会慢慢淡化。我们要更清楚地认识到,数据是有优先值的,在数据中有些是特别核心的,有些即使缺失了也没有多大问题。所以我们要学会真正坐下来盘点那些对公司最有价值、对用户最有价值的数据,这是一个非常重要的趋势。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26CDA 数据分析师会被 AI 取代吗? 在当今数字化时代,数据的重要性日益凸显,数据分析师成为了众多企业不可或缺的角色 ...
2025-06-26CDA 数据分析师证书考取全攻略 在数字化浪潮汹涌的当下,数据已成为企业乃至整个社会发展的核心驱动力。数据分析师作 ...
2025-06-25人工智能在数据分析的应用场景 在数字化浪潮席卷全球的当下,数据以前所未有的速度增长,传统的数据分析方法逐渐难以满足海 ...
2025-06-25评估模型预测为正时的准确性 在机器学习与数据科学领域,模型预测的准确性是衡量其性能优劣的核心指标。尤其是当模型预测结 ...
2025-06-25CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-06-24金融行业的大数据变革:五大应用案例深度解析 在数字化浪潮中,金融行业正经历着深刻的变革,大数据技术的广泛应用 ...
2025-06-24Power Query 中实现移动加权平均的详细指南 在数据分析和处理中,移动加权平均是一种非常有用的计算方法,它能够根据不同数据 ...
2025-06-24数据驱动营销革命:解析数据分析在网络营销中的核心作用 在数字经济蓬勃发展的当下,网络营销已成为企业触达消费者 ...
2025-06-23随机森林模型与 OPLS-DA 的优缺点深度剖析 在数据分析与机器学习领域,随机森林模型与 OPLS-DA(正交偏最小二乘法判 ...
2025-06-23CDA 一级:开启数据分析师职业大门的钥匙 在数字化浪潮席卷全球的今天,数据已成为企业发展和决策的核心驱动力,数据分析师 ...
2025-06-23透视表内计算两个字段乘积的实用指南 在数据处理与分析的过程中,透视表凭借其强大的数据汇总和整理能力,成为了众多数据工 ...
2025-06-20CDA 一级考试备考时长全解析,助你高效备考 CDA(Certified Data Analyst)一级认证考试,作为数据分析师领域的重要资格认证, ...
2025-06-20统计学模型:解锁数据背后的规律与奥秘 在数据驱动决策的时代,统计学模型作为挖掘数据价值的核心工具,发挥着至关重要的作 ...
2025-06-20Logic 模型特征与选择应用:构建项目规划与评估的逻辑框架 在项目管理、政策制定以及社会服务等领域,Logic 模型(逻辑模型 ...
2025-06-19SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的利器 在数据分析的众多方法中,Mann-Kendall(MK)检验凭借其对数据分 ...
2025-06-19