京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代挖掘小数据的重要性
在互联网迅猛发展的今天,大数据连接了千百万的数据点,很多人像信仰宗教一样信仰大数据。但在大数据时代,挖掘小数据也很重要,甚至更加重要。
最近有本新书,名叫《痛点:挖掘小数据满足用户需求》。这本书里说,这本书的作者是世界著名品牌营销专家马丁·林斯特龙,他曾是迪士尼、百事可乐、雀巢等著名企业的品牌顾问。马丁认为,身处大数据时代,我们要注意两个问题。
第一个问题是,大数据不会激发深刻的见解。他认为,创意通常来自把一两个不相融的物体结合起来。但是,大数据库过于狭隘,无法促成对比分析,很难带来突破性的结论。
第二个问题是,大数据重分析,轻情感,数据很难捕捉我们最看重的情感品质,比如友好、可爱。所以虽然大数据能够帮助品牌做决策,但却没办法让人们喜欢你的品牌,也就是没办法提升品牌的受欢迎度。
而且,技术的出现让我们拥有了两种人格,网络的和现实的。这两种人格几乎没有相似之处。在社交媒体上,我们并不是真实的自己。所以,当人们按照生活中的习惯行动的时候,来自网络的大数据分析通常不会很准确。
基于这两个思考,马丁·林斯特龙就提出,在大数据之外,更重要的是对真实生活场景进行观察和分析,也就是寻找小数据,只有这样才能找到用户最真实的需求。挖掘小数据,就是从手势、习惯、装饰、密码等等生活细节中,发现人们的欲望和需要。只有满足这些需要,也就是痛点,才能掌握无限的商机。换句话说,大数据与小数据的结合,才是21世纪实现营销成功的关键因素。
书中举例说,作者曾经受到委托,在沙特阿拉伯设计一个购物中心。他像往常那样在当地进行了详细的调研,发现沙特墙上的涂鸦都有一个主题,那就是水。他还发现,沙特的儿童书里面很少有和沙漠有关的内容,而是以绿洲、溪水为主。而沙特孩子五分之四的玩具是消防车、救护车和警务车,这个比例在全球来说非常高。马丁在咨询了心理学家以后,觉得这些现象都来自于沙特人对火的强烈恐惧,尤其是女性。所以在设计商场的时候,马丁和设计团队设计了几条大水渠穿过商场,还增加了鸟叫声,将商场变成了充满水形象的世界。这个设计最终取得了非常好的效果,就是因为契合了大家的心理需求。
那么,到底该如何挖掘小数据、捕捉需求呢?书里介绍了7个步骤。
第一,搜集资料。想了解某一地区人们的习惯,当地的调研必不可少。可以找几类人获得信息。一个是文化观察者,比如初到此地的新人,问他们的印象。或者当地最基层的人,比如理发师、酒保、邮递员,他们不光会告诉你事情的详情,还会告诉你他们亲朋好友的情况。我们要尽可能从更多的信源中,获得不同的观点。
第二,寻找线索。人有两个自我,一个理想的自我,一个真实的自我,而需求往往就是存在两者的差异之间。调查的时候,理想的自我可以从客厅、背包等显露在外面的地方来看,而真实的自我可以从比较隐私的地方去找,比如冰箱、衣橱等等。
第三,连接线索。问问自己:线索有什么相似的地方?这些线索偏向某个方向吗?如果最初有假设,打算开始验证吗?
第四,关联。寻找顾客行为上的转变,作者称为切入点,从中可以看到一些隐藏的信息。可以表现切入点的事件包括,结交新朋友、得到或失去伴侣、送孩子上大学,以及所有人生中的里程碑或者职业转换。
第五,因果关系。这一步要开始小数据挖掘了,找出因果关系,想想顾客的感情由什么激发?他们需要什么?要站在顾客的角度看问题。
第六,补偿。验证完因果关系,就该提取欲望了。要思考,人们还有什么欲望没被满足?满足欲望的最佳方式是什么?
第七,观念。想想已经发现的欲望,要用什么创意才能满足。作者提醒,创意不太可能在压力下产生,往往是不经意间到来,所以要给自己留有足够的空间。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01