京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代挖掘小数据的重要性
在互联网迅猛发展的今天,大数据连接了千百万的数据点,很多人像信仰宗教一样信仰大数据。但在大数据时代,挖掘小数据也很重要,甚至更加重要。
最近有本新书,名叫《痛点:挖掘小数据满足用户需求》。这本书里说,这本书的作者是世界著名品牌营销专家马丁·林斯特龙,他曾是迪士尼、百事可乐、雀巢等著名企业的品牌顾问。马丁认为,身处大数据时代,我们要注意两个问题。
第一个问题是,大数据不会激发深刻的见解。他认为,创意通常来自把一两个不相融的物体结合起来。但是,大数据库过于狭隘,无法促成对比分析,很难带来突破性的结论。
第二个问题是,大数据重分析,轻情感,数据很难捕捉我们最看重的情感品质,比如友好、可爱。所以虽然大数据能够帮助品牌做决策,但却没办法让人们喜欢你的品牌,也就是没办法提升品牌的受欢迎度。
而且,技术的出现让我们拥有了两种人格,网络的和现实的。这两种人格几乎没有相似之处。在社交媒体上,我们并不是真实的自己。所以,当人们按照生活中的习惯行动的时候,来自网络的大数据分析通常不会很准确。
基于这两个思考,马丁·林斯特龙就提出,在大数据之外,更重要的是对真实生活场景进行观察和分析,也就是寻找小数据,只有这样才能找到用户最真实的需求。挖掘小数据,就是从手势、习惯、装饰、密码等等生活细节中,发现人们的欲望和需要。只有满足这些需要,也就是痛点,才能掌握无限的商机。换句话说,大数据与小数据的结合,才是21世纪实现营销成功的关键因素。
书中举例说,作者曾经受到委托,在沙特阿拉伯设计一个购物中心。他像往常那样在当地进行了详细的调研,发现沙特墙上的涂鸦都有一个主题,那就是水。他还发现,沙特的儿童书里面很少有和沙漠有关的内容,而是以绿洲、溪水为主。而沙特孩子五分之四的玩具是消防车、救护车和警务车,这个比例在全球来说非常高。马丁在咨询了心理学家以后,觉得这些现象都来自于沙特人对火的强烈恐惧,尤其是女性。所以在设计商场的时候,马丁和设计团队设计了几条大水渠穿过商场,还增加了鸟叫声,将商场变成了充满水形象的世界。这个设计最终取得了非常好的效果,就是因为契合了大家的心理需求。
那么,到底该如何挖掘小数据、捕捉需求呢?书里介绍了7个步骤。
第一,搜集资料。想了解某一地区人们的习惯,当地的调研必不可少。可以找几类人获得信息。一个是文化观察者,比如初到此地的新人,问他们的印象。或者当地最基层的人,比如理发师、酒保、邮递员,他们不光会告诉你事情的详情,还会告诉你他们亲朋好友的情况。我们要尽可能从更多的信源中,获得不同的观点。
第二,寻找线索。人有两个自我,一个理想的自我,一个真实的自我,而需求往往就是存在两者的差异之间。调查的时候,理想的自我可以从客厅、背包等显露在外面的地方来看,而真实的自我可以从比较隐私的地方去找,比如冰箱、衣橱等等。
第三,连接线索。问问自己:线索有什么相似的地方?这些线索偏向某个方向吗?如果最初有假设,打算开始验证吗?
第四,关联。寻找顾客行为上的转变,作者称为切入点,从中可以看到一些隐藏的信息。可以表现切入点的事件包括,结交新朋友、得到或失去伴侣、送孩子上大学,以及所有人生中的里程碑或者职业转换。
第五,因果关系。这一步要开始小数据挖掘了,找出因果关系,想想顾客的感情由什么激发?他们需要什么?要站在顾客的角度看问题。
第六,补偿。验证完因果关系,就该提取欲望了。要思考,人们还有什么欲望没被满足?满足欲望的最佳方式是什么?
第七,观念。想想已经发现的欲望,要用什么创意才能满足。作者提醒,创意不太可能在压力下产生,往往是不经意间到来,所以要给自己留有足够的空间。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22