
R语言:list用法、批量读取、写出数据时的用法
列表是一种特别的对象集合,它的元素也由序号(下标)区分,但是各元素的类型可 以是任意对象,不同元素不必是同一类型。元素本身允许是其它复杂数据类型,比如,列表 的一个元素也允许是列表。例如:
[plain] view plain copy
print?在CODE上查看代码片派生到我的代码片
> rec <- list(name="李明", age=30, scores=c(85, 76, 90))
> rec
$name
[1] "李明"
$age
[1] 30
$scores
[1] 85 76 90
列表元素总可以用“列表名[[下标]]”的格式引用。例如:
> rec[[2]]
[1] 30
> rec[[3]][2]
[1] 76
修改列表
列表的元素可以修改,只要把元素引用赋值即可。如:
> rec$age <- 45
甚至
> rec$age <- list(19, 29, 31)
(可以任意修改一个列表元素)。如果被赋值的元素原来不存在,则列表延伸以包含该新 元素。
提取某List某指标
方法一:
先编写一个提取list子集的函数:
subdate<- function(x){
x$DATE
}
然后用lapply或者sapply
sapply(s,subdate)
看一下出来的结果
方法二:
提取DATE内容:
s[[1]]$DATE
变动其中的数字,就可以把每一组的DATE提取出来了。
(需要自己编写循环)
方法三:提取长度大于某程度的list
[html] view plain copy
print?在CODE上查看代码片派生到我的代码片
x[lapply(x, length)>100]
用lapply计算每个x的长度。
list之间的合并
list之间的合并用:
[html] view plain copy
print?在CODE上查看代码片派生到我的代码片
c(list(1),list(2))
——————————————————————————————————————————————————————————————————————
unlist与list的区别
unlist(x)生成一个包含x所有元素的向量。作用是,展平数据列表。
unlist把l.ex[1]=unlist(l.ex)[1]+unlist(l.ex)[2],一拆为二。
[plain] view plain copy
print?在CODE上查看代码片派生到我的代码片
> ##unlist是啥??
> l.ex <- list(list(1:5, LETTERS[1:5]), list("Z","A"), NA)
> #list数据[]与[[]]是一样的
> l.ex[2]
[[1]]
[[1]][[1]]
[1] "Z"
[[1]][[2]]
[1] "A"
> l.ex[[2]]
[[1]]
[1] "Z"
[[2]]
[1] "A"
>
> #unlist把l.ex[1]的元素拆开了,分为unlist[1]+unlist[2]
> unlist(l.ex, recursive = FALSE)[3]
[[1]]
[1] "Z"
> unlist(l.ex, recursive = FALSE)[[3]]
[1] "Z"
————————————————————————————————————————————————————————————————
list在批量读取、写出xlsx数据时的用法
方法弊端:弊端就是循环语句的弊端,导入的原始数据每个sheet都需要相同的数据结构。
list在批量读取数据时候的用法,一开始笔者困惑在:
1、如何循环读取xlsx中的sheet数据,然后批量放入list之中?——先定义list
2、如何定义写出时候的文件名字——paste函数
批量读取的基本流程就是:写入(list[[i]])、操作、写出
[plain] view plain copy
print?在CODE上查看代码片派生到我的代码片
#1、读取xlsx中所有的sheet表格
#如果像vector一样定义List??——list()函数来主动定义,用data.list[[i]]来赋值
data.list<-list()
for (i in 1:2){
data.list[[i]]=read.xlsx("C1.xlsx",i)
}
以上是写入,看看如何写出:
[plain] view plain copy
print?在CODE上查看代码片派生到我的代码片
#3、利用List批量读出操作
#难点:如果构造输出表格的名称——paste来构造名称
flie=list()
xlsxflie=paste(1:2,".xlsx",sep="")
for(i in 1:2){
flie[[i]]=paste("C:/Users/long/Desktop/",xlsxflie[i],sep="")
write.xlsx(data.list2[[i]],file)
}
写出时候文件名称困扰我很久,如何按照一定的规则来命名,可以先用paste弄好固定格式,然后通过paste[i]循环调用。
其中:paste之后会有如vector一般的格式,可以用[i]来调用。
————————————————————————————————————————————————————————————————
list中的字符串型数据如何导出?
list是大规模数据操作非常优秀的方式,能够存放非结构化的文本数据。但是如果,文本分好词之后的数据(如下图),如何将存放在list中的数据进行导出呢?
[plain] view plain copy
print?在CODE上查看代码片派生到我的代码片
[[1]]
n v en n
"职位" "描述" "Android" "平台"
[[2]]
n v n
"岗位" "描述" "前端"
笔者想办法的几种方式:
unlist->变成向量
data.frame->变成序号+单词
as.chacter->单个文本
[plain] view plain copy
print?在CODE上查看代码片派生到我的代码片
#list中的字符串型数据如何导出?
#list中非一般的字符串形式
[[1]]
n v en n
"职位" "描述" "Android" "平台"
[[2]]
n v n
"岗位" "描述" "前端"
#1、unlist与list区别
Job_Pwordseg.ct[1][1] #不论如何都不能得到list中的单个单词
unlist(Job_Pwordseg.ct[1])[1]#可以得到单个单词,向量形式
#2、data.frame法,批量处理时,因为不等长而无法合并
data.frame(Job_Pwordseg.ct[1]) #变成了序号+单词
data.frame(unlist(Job_Pwordseg.ct[1])) #跟list一样的结果
#3、as.character
as.character(unlist(Job_Pwordseg.ct[1]))
#[1] "职位" "描述" "Android" "平台" "进行" "手机"
as.character(Job_Pwordseg.ct[1])
#[1]"c(\"职位\", \"描述\", \"Android\", \"平台\", \"进行\")
变换得到了数据之后,又出现了问题:
如何将list中那么子集合并?——不等长合并
两种方法:c(),可以将list[1] 和list[2]进行直接合并,可以兼容不等长,当然合并之后,还有list文件;
rbind.fill函数,不等长合并函数,在plyr包中。
[plain] view plain copy
print?在CODE上查看代码片派生到我的代码片
#4、t()在list的文本型
t(data.frame(Job_Pwordseg.ct[1]))
#A [,1] [,2] [,3]
#"职位" "描述" "Android"
data.frame(t(data.frame(Job_Pwordseg.ct[1])))
#A [,1] [,2] [,3]
#职位 描述 Android
#4、list中字符的合并用c
c(Job_Pwordseg.ct[1],Job_Pwordseg.ct[2])
不等长合并的时候,rbind.fill函数可以很好将数据进行合并,并且补齐没有匹配到的缺失值为NA。
[plain] view plain copy
print?在CODE上查看代码片派生到我的代码片
#如何解决合并时数据不等长问题——两种方法:do.call函数以及rbind.fill函数(plyr包)
#rbind.fill函数只能合并数据框格式
#do.call函数在数据框中执行函数(函数,数据列)
library("plyr") #加载获取rbind.fill函数
#第一种方法
list1<-list()
list1[[1]]=data.frame(t(data.frame(Job_Pwordseg.ct[1])))
list1[[2]]=data.frame(t(data.frame(Job_Pwordseg.ct[2])))
do.call(rbind.fill,list1)
#第二种方法
u=rbind.fill(data.frame(t(data.frame(Job_Pwordseg.ct[1]))),data.frame(t(data.frame(Job_Pwordseg.ct[2]))))
得到了数据之后,数据量小的话,很容易读写,但是数据量大的话,很难做到那么顺畅。当然,为什么要导出呢——因为要传给别的队友。。。
可以有两种办法:
1、批量写出,批量读入;
2、写写成一个data,然后导出,再写入。
[plain] view plain copy
print?在CODE上查看代码片派生到我的代码片
#读写函数用write.table、read.table+t()
write.table(u,"C:/Users/long/Desktop/3.txt")
t(read.table("C:/Users/long/Desktop/3.txt"))
#分隔符sep=""(空格、制表符、回车),"\n"(引号),"\t"(制表符分隔符中有空格)
#字符型字段中,自带空格,则使用参数 strip.white=TRUE
#方法一:单文件导出,后批量导入
#方法二:先合成一个文本导出,再导入
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26