京公网安备 11010802034615号
经营许可证编号:京B2-20210330
智能建筑业真需要大数据
“三分技术,七分数据,得数据者得天下”。在大数据时代已经到来的时候,不少行业已经开始用大数据思维去发掘大数据的潜在价值。那作为传统行业的建筑业需要大数据吗?
所谓大数据思维,是要全部数据样本而不是抽样;关注效率而不是精确度;关注相关性而不是因果关系。
大数据并不在“大”,而在于“有用”,价值含量、挖掘成本比数量更为重要。大数据时代,建筑行业自然也不能置身度外。事实上,智能数据在国外已有不少应用,也推出了很多概念性的理念和产品。
在国外一些地区,建筑可以自行降低能耗,交通能够预测什么地方会有交通堵点等,这些都是大数据在行业的应用。
众人熟知的赌城,IT人士熟知的CES(美国消费电子展)所在地阿拉斯加就是数据之城。和大多数城市一样,赌城面临水电等市政管道因历史数据不准确而在施工中被挖断的威胁。
为此,利用智能数据开发了城市的市政基础设施网络仿真模型。帮助拉斯维加斯市整合来自各个数据源的数据,利用技术生成了一个三维实时模型,能够显示路面和地下的各种管线设施。
未来的智能建筑在某种程度上也是大数据的集成,是一个云计算大数据的应用中心,将来完全可以实现小到一个灯泡,大到整楼的安全、质量、环境,甚至到人的行为都可以通过楼宇的大数据系统来预测。
原本智能建筑只是监测、控制、报警,而无法预测分析现状和预测事故的发生,而当实现建筑的大数据分析时,则可实现预测、预警、规划和引导,使建筑设备安全使用,人的环境舒适度得到调整,人员的生活、工作都能得到方便智能的应用,并且还将这些大数据信息同时与个人的手机智能端相连,实现所有智能分析有用信息同步享有,即可作用。
现在有很多国外公司想进入国内做建筑行业的信息化,目前国内做得很有规模、很深入的公司也比较少,但是有很多企业也都想借大数据的和云计算这些新技术变革的机会努力做一些创新。
不过,据分析,对于建筑行业的大数据挖掘来说,存在天然的行业壁垒。
首先是数据维度比较复杂,简单来看,既有建筑类的数据:建筑造价类数据、建筑结构类数据、建筑施工工艺类数据、建筑材料类数据,还有管理类数据;
其次是中国的建筑的法律法规和对专业的要求跟国外不一样,中国的一个特点是各个省市的建筑行业法律法规都不一样。在这种情况下,建筑行业的大数据应用成了一个高门槛的行业。
虽然入门很难,但必须积极应对,因为大数据带给建筑业的积极影响将是难以想象的。以传统的建筑行业造价咨询公司为例,如果公司有100个造价人员,这个规模的公司至少有两人专门做询价,也就是找材料价格,而一个咨询公司的咨询师年成本大概是30万元,两个人就是60万元。
而从收集材料厂商数据的成本来看,收集一个厂商的信息,大约一年需要140元钱,而目前国内建筑材料生产厂商79万家,如果要把这79万家的材料信息收集回来,这个成本是巨大的。大数据的应用,不但可以大大节省人力成本,而且便于操作。
此外,大数据还将开启建筑能源管理新模式。
在建材领域,大数据或许可以预测水泥市场走势,有效化解产能过剩;在企业内部搭建平台,用于监控市场和作出决策;改变传统B2B,做到线上线下无缝对接;建设高度信息化的绿色建材产业园区,改变传统意义的建筑设计模式……
当下PC、平板电脑、智能手机等联网设备的快速发展,对当今和未来的科技和经济发展以及社会生产和生活带来重大影响。真正的大数据挖掘与应用,值得期待和深入探索。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22