京公网安备 11010802034615号
经营许可证编号:京B2-20210330
连物联网数据都理不清楚还怎么搞大数据分析
物联网的数据有哪些特点?有没有合理化的分类方式?我们有没有应对物联网数据带来的压力和挑战的能力?物联网1.0阶段有价值的数据有哪些?本文旨在给你提供一些方法论和启示。
数据即价值是目前计算机领域极其推崇的观念。数据无论多少都被归结为大数据,数据分析越来越热门,资本也对贴有大数据标签的公司趋之若鹜。数据如同流动的数字货币一样被一再的评估、追崇。
当物联网在行业开始落地和应用后,由于其数据产生的速度之快,种类之多,体量之巨大都会对现有云端技术架构、数据处理方式带来超乎想象的压力和挑战。
面对如此复杂的数据,传说中的 “数据即价值”将被 “有价值的数据”这一理性的认识所打破。
物联网的数据有哪些特点?有没有合理化的分类方式?我们有没有应对物联网数据带来的压力和挑战的能力?物联网1.0阶段有价值的数据有哪些?
静态数据与动态数据
单从数据的变化上来说,物联网数据可以分为静态数据和动态数据,静态数据多为标签类,地址类数据,RFID产生的数据多为静态数据,静态数据多以结构性、关系型数据库存储;动态数据是以时间为序列的数据,物联网动态数据的特点是每个数据都与时间有一一对应关系,并且这种关系在数据处理中尤其重要,这类数据存储通常采用时序数据库方式存储。
静态数据会随着传感器的增多,控制设备数量的增多而增加;动态数据不仅随设备数量,传感器数量增加而增加,还会随时间的增加而增加。
无论静态数据还是动态数据,在物联网1.0阶段数据的增长是线性的,并非是指数级的,但是因为物联网动态数据是连续不间断的,因此数据的量也是海量的。因此物联网1.0阶段数据的压力是可控的,并不是如宣传的那样不可数,不可控。
能源类/资产属性类/诊断类/信号类
就数据的原始特性来说,我们可以把物联网数据分为能源类数据、资产属性类数据、诊断类数据、信号类数据。
能源类数据:是指可以能耗相关的,或者是计算能耗所需的相关数据例如电流、电压、功率因子、频率、谐波等等。能源数据是物联网最关键的数据类型,物联网最终的目的之一就是节能,那么获取能源数据,理解能源数据,分析能源数据是物联网实施中必须的功能。能源采集设备也是物联网重要的设备之一。
资产属性类数据:资产类数据通常指硬件资产数据比如设备的规格、参数等属性,设备的位置信息,设备之间的从属关系等等。资产类数据主要用于资产管理,资产管理是工业物联网非常重要的功能甚至可以作为独立的系统研究,因为它可以和ERP系统、MES系统、物流等几乎所有的系统对接。
诊断类数据:诊断类数据是指设备运行过程中检测设备运行状态的数据,诊断类数据可以有两类:一类为设备运行参数,例如设备输入/输出值,这里通常为传统工业自动化类数据即OT技术相关类数据;另外一类为设备外围诊断数据,例如设备的表面温度、设备噪音、设备震动等等,值得提出的是外围诊断才是物联网技术体现的地方它包括新型传感器技术和物联网通讯技术。外围诊断数据是预测性维护的重要的元数据,也为深度控制模型提供依据,因此诊断类数据是我们需要着重关注的数据类型。
信号类数据:信号类数据或者告警类数据是目前工业领域使用最普及的数据,因为其直观、易懂、关键,同时在本地、远程同时告知。信号类数据容易被忽略,但是它是物联网所需要的、也是快速可以采集到、并对物联网系统提供重要参考价值的数据之一。
数据之间的关联性
数据之间的关联性是不同数据之间的关系,数据之间的关系对了解整个系统的运行有着最直接的影响,数据之间的正确关系的梳理是系统有效运行,产生价值的基石。
数据之间的关联性可以从下面几个方面分析:
时间关联性:即同一时刻的数据照相,数据是同一时刻系统产生的,它反映的是系统这一时刻的状态,从数据世界角度看,这个系统就是这一时刻的数据集合。数据照相体现的是系统静态展示;时间戳是这类数据关键的因素,因此要求各个数据获取的时间戳必须相同,时间戳是目前很多数据所缺失的,也是物联网实施中需要关注和解决的问题之一。
流程关联性:即一个点的数据进过一定时间后影响第二个点数据的产生,它体现的是系统动态的流程展示。数据之间的流程关系性需要模型提供,并在实施中进行修正。
数据的时效性
数据的时效性是指数据产生到其被清除的时间,数据时效性是由系统的实施部署所决定。数据可以被使用多次也可以被使用一次后就可以被清除。总体来说远程部署数据还是边缘部署数据影响着数据的时效性,通常边缘部署的数据时效性短,远程数据的时效性长。边缘部署需要的数据通常及时性强,但是边缘存储空间,计算能力弱因此不能长期保存;远程数据通常为历史性数据展示、计算分析,同时云端空间、计算的伸缩性强,因此数据时效性长。
数据的实时性也是数据时效性的一部分,实时性和数据的部署位置,数据的重要性以及传输方式都有关联性。
以数据为中心的物联网设计方法论
总结物联网中的各类数据及特性或者抽象其通用性的目的是为了更好的选择不同的物联网技术进行快速、有效的实施。以数据为中心的物联网解决方案甚至商业模式将会是物联网的主流设计思想。
下文将从数据如何采集,数据如何预处理、数据如何传输等不同的角度进行分析如何应用物联网的各种技术。
以数据流向为核心的设计思路
从数据流向来设计包括:数据采集、数据汇聚、数据传输、数据持久化、数据展示、数据处理、数据矫正、数据消费。
以数据生产/消费的为核心的设计思路
生产/消费为核心的设计思路多以云端业务为中心,尤其整合现有各个分散子系统为目标或者产业链上下游的协同操作,物联网的数据多以关键数据指标类型为主或者为起始数据角色。
1)下面为供应链的数据流设计思路。
2)下面为综合管理系统设计
了解物联网数据是什么,并能够提出相应的物联网技术,掌握有价值的数据是物联网方案技术层面的第一步。同样也是物联网技术最终的具象单元——“有价值的数据”。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21