京公网安备 11010802034615号
经营许可证编号:京B2-20210330
连物联网数据都理不清楚还怎么搞大数据分析
物联网的数据有哪些特点?有没有合理化的分类方式?我们有没有应对物联网数据带来的压力和挑战的能力?物联网1.0阶段有价值的数据有哪些?本文旨在给你提供一些方法论和启示。
数据即价值是目前计算机领域极其推崇的观念。数据无论多少都被归结为大数据,数据分析越来越热门,资本也对贴有大数据标签的公司趋之若鹜。数据如同流动的数字货币一样被一再的评估、追崇。
当物联网在行业开始落地和应用后,由于其数据产生的速度之快,种类之多,体量之巨大都会对现有云端技术架构、数据处理方式带来超乎想象的压力和挑战。
面对如此复杂的数据,传说中的 “数据即价值”将被 “有价值的数据”这一理性的认识所打破。
物联网的数据有哪些特点?有没有合理化的分类方式?我们有没有应对物联网数据带来的压力和挑战的能力?物联网1.0阶段有价值的数据有哪些?
静态数据与动态数据
单从数据的变化上来说,物联网数据可以分为静态数据和动态数据,静态数据多为标签类,地址类数据,RFID产生的数据多为静态数据,静态数据多以结构性、关系型数据库存储;动态数据是以时间为序列的数据,物联网动态数据的特点是每个数据都与时间有一一对应关系,并且这种关系在数据处理中尤其重要,这类数据存储通常采用时序数据库方式存储。
静态数据会随着传感器的增多,控制设备数量的增多而增加;动态数据不仅随设备数量,传感器数量增加而增加,还会随时间的增加而增加。
无论静态数据还是动态数据,在物联网1.0阶段数据的增长是线性的,并非是指数级的,但是因为物联网动态数据是连续不间断的,因此数据的量也是海量的。因此物联网1.0阶段数据的压力是可控的,并不是如宣传的那样不可数,不可控。
能源类/资产属性类/诊断类/信号类
就数据的原始特性来说,我们可以把物联网数据分为能源类数据、资产属性类数据、诊断类数据、信号类数据。
能源类数据:是指可以能耗相关的,或者是计算能耗所需的相关数据例如电流、电压、功率因子、频率、谐波等等。能源数据是物联网最关键的数据类型,物联网最终的目的之一就是节能,那么获取能源数据,理解能源数据,分析能源数据是物联网实施中必须的功能。能源采集设备也是物联网重要的设备之一。
资产属性类数据:资产类数据通常指硬件资产数据比如设备的规格、参数等属性,设备的位置信息,设备之间的从属关系等等。资产类数据主要用于资产管理,资产管理是工业物联网非常重要的功能甚至可以作为独立的系统研究,因为它可以和ERP系统、MES系统、物流等几乎所有的系统对接。
诊断类数据:诊断类数据是指设备运行过程中检测设备运行状态的数据,诊断类数据可以有两类:一类为设备运行参数,例如设备输入/输出值,这里通常为传统工业自动化类数据即OT技术相关类数据;另外一类为设备外围诊断数据,例如设备的表面温度、设备噪音、设备震动等等,值得提出的是外围诊断才是物联网技术体现的地方它包括新型传感器技术和物联网通讯技术。外围诊断数据是预测性维护的重要的元数据,也为深度控制模型提供依据,因此诊断类数据是我们需要着重关注的数据类型。
信号类数据:信号类数据或者告警类数据是目前工业领域使用最普及的数据,因为其直观、易懂、关键,同时在本地、远程同时告知。信号类数据容易被忽略,但是它是物联网所需要的、也是快速可以采集到、并对物联网系统提供重要参考价值的数据之一。
数据之间的关联性
数据之间的关联性是不同数据之间的关系,数据之间的关系对了解整个系统的运行有着最直接的影响,数据之间的正确关系的梳理是系统有效运行,产生价值的基石。
数据之间的关联性可以从下面几个方面分析:
时间关联性:即同一时刻的数据照相,数据是同一时刻系统产生的,它反映的是系统这一时刻的状态,从数据世界角度看,这个系统就是这一时刻的数据集合。数据照相体现的是系统静态展示;时间戳是这类数据关键的因素,因此要求各个数据获取的时间戳必须相同,时间戳是目前很多数据所缺失的,也是物联网实施中需要关注和解决的问题之一。
流程关联性:即一个点的数据进过一定时间后影响第二个点数据的产生,它体现的是系统动态的流程展示。数据之间的流程关系性需要模型提供,并在实施中进行修正。
数据的时效性
数据的时效性是指数据产生到其被清除的时间,数据时效性是由系统的实施部署所决定。数据可以被使用多次也可以被使用一次后就可以被清除。总体来说远程部署数据还是边缘部署数据影响着数据的时效性,通常边缘部署的数据时效性短,远程数据的时效性长。边缘部署需要的数据通常及时性强,但是边缘存储空间,计算能力弱因此不能长期保存;远程数据通常为历史性数据展示、计算分析,同时云端空间、计算的伸缩性强,因此数据时效性长。
数据的实时性也是数据时效性的一部分,实时性和数据的部署位置,数据的重要性以及传输方式都有关联性。
以数据为中心的物联网设计方法论
总结物联网中的各类数据及特性或者抽象其通用性的目的是为了更好的选择不同的物联网技术进行快速、有效的实施。以数据为中心的物联网解决方案甚至商业模式将会是物联网的主流设计思想。
下文将从数据如何采集,数据如何预处理、数据如何传输等不同的角度进行分析如何应用物联网的各种技术。
以数据流向为核心的设计思路
从数据流向来设计包括:数据采集、数据汇聚、数据传输、数据持久化、数据展示、数据处理、数据矫正、数据消费。
以数据生产/消费的为核心的设计思路
生产/消费为核心的设计思路多以云端业务为中心,尤其整合现有各个分散子系统为目标或者产业链上下游的协同操作,物联网的数据多以关键数据指标类型为主或者为起始数据角色。
1)下面为供应链的数据流设计思路。
2)下面为综合管理系统设计
了解物联网数据是什么,并能够提出相应的物联网技术,掌握有价值的数据是物联网方案技术层面的第一步。同样也是物联网技术最终的具象单元——“有价值的数据”。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27